• 제목/요약/키워드: Dissipation Energy

검색결과 1,722건 처리시간 0.028초

에너지소산 제어 알고리듬의 제어이득 산정 (Control-Gain Estimation of Energy Dissipation Control Algorithms)

  • 이상현;민경원;강상훈
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2004년도 봄 학술발표회 논문집
    • /
    • pp.431-438
    • /
    • 2004
  • This study is on control-gain estimation of energy dissipation control algorithms. Velocity feedback, bang-bang, and energy dissipation control algorithms are proposed based on the Lyapunov stability theory and their performances are evaluated and compared. Saturation problem is considered in the design of the velocity feedback and energy dissipation control algorithms, and chattering problem in bang-bang control is solved by using boundary layer. Numerical results show that the proposed control algorithms can dissipate the structural energy induced by wind loads efficiently, and thus provide good control performance.

  • PDF

연속조작 기포탑에서 열전달 모델 및 에너지 소멸 속도 (Heat Transfer Model and Energy Dissipation Rate in Bubble Columns with Continuous Operation)

  • 장지화;서명재;임대호;강용;정헌;이호태
    • Korean Chemical Engineering Research
    • /
    • 제47권5호
    • /
    • pp.587-592
    • /
    • 2009
  • 연속조작 기포탑에서 열전달 메카니즘을 검토하기 위하여 열전달 모델과 에너지 소멸속도를 고찰하였다. 기포탑에서 표면갱신이론(Surface renewal theory)에 기초한 비정상상태 열전달모델에 의한 에너지소멸 속도($E_D$)는 기포탑에서 기체와 액체상의 거동에 의한 수력학적인 에너지소멸 속도($P_v$)와 비교하여 매우 작게 나타났다. 이와같은 결과로 표면갱신 이론에 의한 비정상상태 열전달모델에서 사용된 에너지 소멸속도와 기포탑 전체에 대한 수력학적 에너지 수지에 의해 산출된 수력학적 에너지 소멸속도는 산출 메카니즘이 서로 다른 별개의 에너지 소멸속도로 규명되었다. 이들 두 종류의 에너지 소멸속도를 각각 본 연구의 실험 변수인 기체와 액체 유속의 상관식으로 나타내어 완전히 다른 값을 나타냄을 확인하였다.

Dissipation of energy in steel frames with PR connections

  • Reyes-Salazar, Alfredo;Haldar, Achintya
    • Structural Engineering and Mechanics
    • /
    • 제9권3호
    • /
    • pp.241-256
    • /
    • 2000
  • The major sources of energy dissipation in steel frames with partially restrained (PR) connections are evaluated. Available experimental results are used to verify the mathematical model used in this study. The verified model is then used to quantify the energy dissipation in PR connections due to hysteretic behavior, due to viscous damping and at plastic hinges if they are formed. Observations are made for two load conditions: a sinusoidal load applied at the top of the frame, and a sinusoidal ground acceleration applied at the base of the frame representing a seismic loading condition. This analytical study confirms the general behavior, observed during experimental investigations, that PR connections reduce the overall stiffness of frames, but add a major source of energy dissipation. As the connections become stiffer, the contribution of PR connections in dissipating energy becomes less significant. A connection with a T ratio (representing its stiffness) of at least 0.9 should not be considered as fully restrained as is commonly assumed, since the energy dissipation characteristics are different. The flexibility of PR connections alters the fundamental frequency of the frame. Depending on the situation, it may bring the frame closer to or further from the resonance condition. If the frame approaches the resonance condition, the effect of damping is expected to be very important. However, if the frame moves away from the resonance condition, the energy dissipation at the PR connections is expected to be significant with an increase in the deformation of the frame, particularly for low damping values. For low damping values, the dissipation of energy at plastic hinges is comparable to that due to viscous damping, and increases as the frame approaches failure. For the range of parameters considered in this study, the energy dissipations at the PR connections and at the plastic hinges are of the same order of magnitude. The study quantitatively confirms the general observations made in experimental investigations for steel frames with PR connections; however, proper consideration of the stiffness of PR connections and other dynamic properties is essential in predicting the dynamic behavior.

Energy dissipation response of brick masonry under cyclic compressive loading

  • Senthivel, R.;Sinha, S.N.
    • Structural Engineering and Mechanics
    • /
    • 제16권4호
    • /
    • pp.405-422
    • /
    • 2003
  • Scaled brick masonry panels were tested under cyclic unialxial compression loading to evaluate its deformation characteristics. An envelope stress - strain curves, a common point curves and stability point curves were obtained for various cyclic test conditions. Loops of the stress-strain hysteresis were used to determine the energy dissipation for each cycle. Empirical expressions were proposed for the relations between energy dissipation and envelope and residual strains. These relations indicated that the decay of masonry strength starts at about two-third of peak stress.

다방향 쇄파 발생 전후의 파랑 성분간 에너지 전이 및 소산 (Energy Dissipation and Transfer among Wave Components during Directional Breaking Processes)

  • 홍기용;에스똘히오메자
    • 한국해양공학회지
    • /
    • 제17권6호
    • /
    • pp.1-6
    • /
    • 2003
  • Wave energy dissipation and energy transfer between wave components, during the directional wave breakings, are investigated. Directional incipient and plunging breakers were generated by focusing the multi-frequency and multi-directional wave components at a designed location, based on a constant wave amplitude and a constant wave steepness frequency spectrum. The time series of surface wave elevation was measured at 9 different locations around the wave focusing point, using a wave gauge array. In order to examine the variation of the directional spreading function, the horizontal velocity of fluid motion was also measured. By comparing energy spectrums, before and after the breaking, the characteristics of energy dissipation and energy transfer, caused by wave breaking, are investigated. Their dependencies on directionality, as well as frequency, are analyzed. The breakings significantly dissipate wave energy, through energy transfer, in the upper region of the peak-frequency band, while enhancing wave energy in the low-frequency band.

Application of self-centering wall panel with replaceable energy dissipation devices in steel frames

  • Chao, Sisi;Wu, Hanheng;Zhou, Tianhua;Guo, Tao;Wang, Chenglong
    • Steel and Composite Structures
    • /
    • 제32권2호
    • /
    • pp.265-279
    • /
    • 2019
  • The self-centering capacity and energy dissipation performance have been recognized critically for increasing the seismic performance of structures. This paper presents an innovative steel moment frame with self-centering steel reinforced concrete (SRC) wall panel incorporating replaceable energy dissipation devices (SF-SCWD). The self-centering mechanism and energy dissipation mechanism of the structure were validated by cyclic tests. The earthquake resilience of wall panel has the ability to limit structural damage and residual drift, while the energy dissipation devices located at wall toes are used to dissipate energy and reduce the seismic response. The oriented post-tensioned strands provide additional overturning force resistance and help to reduce residual drift. The main parameters were studied by numerical analysis to understand the complex structural behavior of this new system, such as initial stress of post-tensioning strands, yield strength of damper plates and height-width ratio of the wall panel. The static push-over analysis was conducted to investigate the failure process of the SF-SCWD. Moreover, nonlinear time history analysis of the 6-story frame was carried out, which confirmed the availability of the proposed structures in permanent drift mitigation.

Energy dissipation system for earthquake protection of cable-stayed bridge towers

  • Abdel Raheem, Shehata E.;Hayashikawa, Toshiro
    • Earthquakes and Structures
    • /
    • 제5권6호
    • /
    • pp.657-678
    • /
    • 2013
  • For economical earthquake resistant design of cable-stayed bridge tower, the use of energy dissipation systems for the earthquake protection of steel structures represents an alternative seismic design method where the tower structure could be constructed to dissipate a large amount of earthquake input energy through inelastic deformations in certain positions, which could be easily retrofitted after damage. The design of energy dissipation systems for bridges could be achieved as the result of two conflicting requirements: no damage under serviceability limit state load condition and maximum dissipation under ultimate limit state load condition. A new concept for cable-stayed bridge tower seismic design that incorporates sacrificial link scheme of low yield point steel horizontal beam is introduced to enable the tower frame structure to remain elastic under large seismic excitation. A nonlinear dynamic analysis for the tower model with the proposed energy dissipation systems is carried out and compared to the response obtained for the tower with its original configuration. The improvement in seismic performance of the tower with supplemental passive energy dissipation system has been measured in terms of the reduction achieved in different response quantities. Obtained results show that the proposed energy dissipation system of low yield point steel seismic link could strongly enhance the seismic performance of the tower structure where the tower and the overall bridge demands are significantly reduced. Low yield point steel seismic link effectively reduces the damage of main structural members under earthquake loading as seismic link yield level decreases due their exceptional behavior as well as its ability to undergo early plastic deformations achieving the concentration of inelastic deformation at tower horizontal beam.

에너지 소산 모델을 이용한 잠수된 가동식 방파제의 유체동역학적 성능 수치해석 (Numerical Analysis of Hydrodynamic Performance of a Movable Submerged Breakwater Using Energy Dissipation Model)

  • 김도현;구원철
    • 대한조선학회논문집
    • /
    • 제49권4호
    • /
    • pp.287-295
    • /
    • 2012
  • Hydrodynamic performance of a movable submerged breakwater was analyzed using energy dissipation model. Based on two-dimensional boundary element method the equation of motion including a viscous dissipation term proportional to velocity squared was solved by Newton-Raphson method. Energy dissipation coefficients as well as reflection and transmission coefficients of a submerged flat plate were calculated with various plate lengths and thickness. Both real and imaginary components of body displacement and forces were used to solve the motion of breakwater accurately. The effect of the magnitude of dissipation coefficient on the body displacement was evaluated. The results from the potential theory with no dissipation term were found to be an overestimate in resonance frequency.

휨지배 철근콘크리트 부재의 에너지 소산능력 평가방법 (Simplified Method for Estimating Energy-Dissipation Capacity of Flexure-Dominant RC Members)

  • 엄태성;박홍근
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2002년도 춘계 학술발표회 논문집
    • /
    • pp.297-305
    • /
    • 2002
  • As advanced earthquake analysis/design methods such as the nonlinear static analysis are developed, it is required to estimate precisely the cyclic behavior of reinforced concrete members that is characterized by strength, deformability, and capacity of energy dissipation. However, currently, estimation of energy dissipation depends on empirical equations that are not sufficiently accurate, or experiment and sophisticated numerical analysis which are difficult to use in practice. In the present study, nonlinear finite element analysis was performed to investigate the behavioral characteristics of flexure-dominant RC members under cyclic load. The effects of axial force, arrangement of reinforcing bars, and reinforcement ratio on the cyclic behavior were studied. Based on the investigation, a simplified method to estimate the capacity of energy dissipation was proposed, and it was verified by the comparison with the finite element analyses and experiments. The proposed method can estimate the energy dissipation of RC members more precisely than currently used empirical equations, and it is easily applicable in practice.

  • PDF

열교환기 형식에 따른 열교환기의 에너지 및 엔트랜시 성능 특성 해석 (Energy and Entransy Characteristic Analysis of Heat Exchangers Depending on Heat Exchanger Type)

  • 김경훈;정영관;한철호
    • 한국수소및신에너지학회논문집
    • /
    • 제31권1호
    • /
    • pp.112-121
    • /
    • 2020
  • In this work energy and entransy characteristics of heat exchangers are analyzed for 12 different flow arrangements of heat exchangers. The dimensionless parameters are number of entransy dissipation (Ng), number of entransy dissipation-based thermal resistance (Nr), and entransy dissipation-based effectiveness of heat-exchanger (εg). The dimensionless parameters are expressed analytically in terms of the effectiveness of heat exchanger (ε), heat capacity ratio (c), and number of transfer unit (N) for optimal performance of heat exchangers. Results showed that the dimensionless parameters based on the entransy dissipation can be useful concepts for optimal design of heat exchangers.