• Title/Summary/Keyword: Dissimilar metal welding

Search Result 180, Processing Time 0.027 seconds

Effect of Weld Residual Stress on Fatigue Analysis of Nozzle (노즐의 피로해석에 미치는 용접잔류응력의 영향)

  • Kim, Sang-Chul;Kim, Man-Won
    • Journal of Welding and Joining
    • /
    • v.32 no.1
    • /
    • pp.71-78
    • /
    • 2014
  • Although the fatigue design curve of ASME Code has enough margin with respect to alternating stress and cycles, the welding residual stress(WRS) should be included in fatigue analysis. In this paper, WRS distribution in a nozzle with dissimilar metal weldment was obtained by finite element analysis and was added in fatigue analysis. The fatigue analysis was performed by following the ASME Code including thermal and stress analysis applying with postulated 30 transient conditions. The calculated results of a cumulative fatigue usage factors(CUF) were compared for the case of the models with or without WRS effects. The results showed that the CUF at weldment and heat affected zone was affected by the WRS.

Estimation of residual stress in welding of dissimilar metals at nuclear power plants using cascaded support vector regression

  • Koo, Young Do;Yoo, Kwae Hwan;Na, Man Gyun
    • Nuclear Engineering and Technology
    • /
    • v.49 no.4
    • /
    • pp.817-824
    • /
    • 2017
  • Residual stress is a critical element in determining the integrity of parts and the lifetime of welded structures. It is necessary to estimate the residual stress of a welding zone because residual stress is a major reason for the generation of primary water stress corrosion cracking in nuclear power plants. That is, it is necessary to estimate the distribution of the residual stress in welding of dissimilar metals under manifold welding conditions. In this study, a cascaded support vector regression (CSVR) model was presented to estimate the residual stress of a welding zone. The CSVR model was serially and consecutively structured in terms of SVR modules. Using numerical data obtained from finite element analysis by a subtractive clustering method, learning data that explained the characteristic behavior of the residual stress of a welding zone were selected to optimize the proposed model. The results suggest that the CSVR model yielded a better estimation performance when compared with a classic SVR model.

Dissimilar Friction Stir Welding Characteristics of Mg Alloys(AZ31 and AZ61) (AZ31와 AZ61 마그네슘 합금의 이종 마찰교반용접 특성)

  • Park, Kyoung Do;Lee, Hae Jin;Lee, Dai Yeol;Kang, Dae Min
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.5
    • /
    • pp.99-104
    • /
    • 2017
  • Friction stir welding is a solid-state joining process and is useful for joining dissimilar metal sheets. In this study, the experimental conditions of the friction stir welding were determined by the two-way factorial design to evaluate the characteristics of the dissimilar friction stir welding of AZ31 and AZ61 magnesium alloys. The levels of rotation speed and welding speed, which are welding variables, were 1000, 2000, 3000 rpm and 100, 200, 300 mm/min, respectively. From the results, the greater the rotation speed and the lower the welding speed of the tool were, the greater the tensile strength of the welded part was. The contribution of the welding speed of the tool is larger than that of the rotation speed of the tool. In addition, the optimal conditions for tensile strength in the dissimilar friction stir joint were predicted to be the rotation speed of 3000 rpm and welding speed of 100 mm/min, and the tensile strength under the optimal conditions was estimated to be $214{\pm}6.57Mpa$ with 99% reliability.

Effects of Welding Conditions and Material Arrangement on Tensile Properties of Friction Stir Lap Welded of Dissimilar Al Alloy, A5J32/A5052 (A5J32/A5052 이종 알루미늄 합금 겹치기 마찰교반접합부의 인장성질에 미치는 재료배열 및 접합조건의 영향)

  • Yoon, Tae-Jin;Kang, Myung-Chang;Kang, Chung-Yun
    • Journal of Powder Materials
    • /
    • v.20 no.4
    • /
    • pp.302-307
    • /
    • 2013
  • A5J32-T4 and A5052-H32 dissimilar aluminum alloy plates with thickness of 1.6 and 1.5 mm were welded by friction stir lap welding (FSLW). The FSLW were studied using different probe length tool and various welding conditions which is rotation speed of 1000, 1500 rpm and welding speed of 100 to 600 mm/min and material arrangement, respectively. The effects of plunge depth of tool and welding conditions on tensile properties and weld nugget formation. The results showed that three type nugget shapes such as hooking, void, sound have been observed with revolutionary pitch. This plunge depth and material arrangement were found to effect on the void and hooking formation, which in turn significantly influenced the mechanical properties. The maximum joint efficiency of the FSLWed plates was about 90% compared to base metal, A5052-H32 when the A5052-H32 was positioned upper plate and plunge depth was positioned at near interface between upper and lower plates.

A Study of Characteristics on the Dissimilar Metals (ASTM Type 316L - Carbon Steel : ASTM A516-70) Welds Made with FCA Multiple Layer Welding (스테인리스강(ASTM Type 316L)과 탄소강(ASTM A516 Gr.70) 이종금속의 FCA 다층 용접부 특성에 대한 연구)

  • Kim, Se Cheol;Hyun, Jun Hyeok;Shin, Tae Woo;Koh, Jin Hyun
    • Journal of Welding and Joining
    • /
    • v.34 no.3
    • /
    • pp.69-76
    • /
    • 2016
  • Characteristics of dissimilar metal welds between ASTM Type 316L and carbon steel ASTM A516 Gr.70 made with FCAW were evaluated in terms of microstructure, ferrite content, EDS analysis, hardness, tensile strength, impact toughness and corrosion resistance. Three heat inputs of 10.4, 16.9, 23.4kJ/cm were employed to make joints of dissimilar metals with E309LMoT1-1 wire. Microstructure of dissimilar weld metals consisted of mostly vermicular type of ${\delta}$-ferrite and some lathy type of ${\delta}$-ferrite, and ${\delta}$-ferrite was transformed into globular type in reheated zone. In all conditions, weld metals were solidified on FA solidification mode. Based on the EDS analysis of weld metals, All Creq/Nieq values were in the range of FA solidification mode, and it was decreased with increasing heat inputs whereas it was increased with increasing layers. The amount of ${\delta}$-ferrite was decreased with increasing heat input due to the difference of cooling rate, and it was increased with increasing layers. Accordingly, hardness and tensile strength of dissimilar metals weld joints was decreased with increasing heat input while impact energy was increased with increasing heat input. Corrosion test of dissimilar metals weld joints showed that weight gain rate of heat input 10.4kJ/cm was the greatest, and that of three heat inputs became constant after certain time.

The effects of Welding Conditions on Tensile Properties of Friction Stir Lap Welded of Dissimilar Al Alloy, A6K31/A5J32 (이종 알루미늄 합금 A6K31/A5J32 겹치기 마찰교반 접합부의 인장성질에 미치는 접합조건의 영향)

  • Yoon, Tae-Jin;Kim, Sang-Ju;Song, Sang-Woo;Hong, Jae-Keun;Kang, Chung-Yun
    • Journal of Welding and Joining
    • /
    • v.29 no.2
    • /
    • pp.72-79
    • /
    • 2011
  • The scope of this investigation is to evaluate the effect of joining parameters on the microstructural features and mechanical properties of dissimilar aluminum alloys, 1mm-thickness fixing AA6K31 at the top position and fixing AA5J32 at the bottom position. The friction stir lap welds were studied under various welding conditions, rotation speed of 1000, 1250, 1500rpm and welding speed of 100, 300, 500, 700mm/min, respectively. Mechanical test has been investigated in terms of tensile shear test and hardness test. The results showed that three type nugget shapes such as onion ring, zigzag type, hooking with the void, have been observed with revolutionary pitch. All welding conditions fractured at the HAZ of top plate, A6K31 and also the strength compare with base metal of lap joints were low efficiency, 52~63%. The thickness of fractured position was decreased with the lower heat input conditions. The relationships were excellent due to linear between the effective thickness of fractured position and peak load. The fractured position was the interface between joint area and not joint area. Also the strength efficiency compared with base metal was lower than decreasing rate of thickness because the hardness was decreased at fractured position due to softened material.

Macro and Micro-electrochemical Characteristics on Dissimilar Welding Metal of Double Wall Gas Pipe for Duel Fuel Engine (이중 연료 엔진용 이중벽 가스 배관 이종 용접부의 매크로 및 마이크로 전기화학적 특성)

  • Kim, Seong-Jong;Park, Jae-Cheul;Han, Min-Su;Jang, Seok-Ki
    • Corrosion Science and Technology
    • /
    • v.9 no.6
    • /
    • pp.331-337
    • /
    • 2010
  • This study compared the macro and micro electrochemical characteristics at the local area of welding metal on dissimilar welding parts for type 304 stainless steel (SS) and type 316L SS. The materials are used for double wall gas pipe of duel fuel engine for a ship. The various potentiodynamic experiments were performed several times in 10% ${H_2C_2O_2}{\cdot}{H_2O}$ solution using macro and micro methods, respectively. The micro electrochemical experiments conducted to resolve at local area on cross-section of dissimilar welding materials by micro-droplet cell device. The micro-droplet cell techniques can be used almost electrochemical experiments to resolve corrosion characteristics of the limited electrode area of the metallic surface between wetted spot of working electrode and tip of sharpened capillary tube. The results of macro electrochemical experiments show that resistance of active dissolution reaction at welding zone was high due to low current density by formation of passivation protection film at passive region. According to the micro electrochemical experiment, the corrosion current density of welding zone and bond zone were relatively high.

Heat Transfer Analysis of Friction Welding of A2024 to SM45C (A2024 와 SM45C 마찰용접의 열전달 해석)

  • 이상윤;윤병수
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.10 no.1
    • /
    • pp.65-70
    • /
    • 2001
  • The hear transfer mechanism initiating the friction welding is examined and a transient three dimensional heat conduc-tion model for the welding of two dissimilar cylindrical metal bars is investigated. The cylindrical metal bars are made of materials made of A2024 and SM 45C. Numerical simulations of heat flow are performed using the finite volume method. Respectively. Commercial FLUENT code is used in the heat flow simulation and maximum temperature and distribution of temperature are calculated. Temperature of friction welded joining face is compared with the temperature distribution measured by experiment and numerical simulation. The maximum temperature of friction welded joining face is lower than melting point of A2024-T6 aluminum alloy using insert metal. The temperature distribution of friction welded join- ing face with insert metal is more uniform than that of without inset metal.

  • PDF

A Round-Robin Analysis of Temperature and Residual Stresses in Dissimilar Metal Weld (이종금속용접부 온도 및 잔류응력의 라운드로빈 해석)

  • Song, Min-Sup;Kang, Sun-Ye;Park, June-Soo;Sohn, Gap-Heon
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.85-87
    • /
    • 2008
  • DMWs are common feature of the PWR in the welded connections between carbon steel and stainless steel piping. The nickel-based weld metal, Alloy 82/182, is used for welding the dissimilar metals and is known to be susceptible to PWSCC. A round-robin program has been implemented to benchmark the numerical simulation of the transient temperature and weld residual stresses in the DMWs. To solve the round-robin problem related to Pressurizer Safety & Relief nozzle, the thermal elasto-plastic analysis is performed in the DMW by using the FEM. The welding includes both the DMW of the nozzle to safe-end and the SMW of the safe-end and piping. Major results of the analyses are discussed: The axial and circumferential residual stresses are found to be -88MPa(225MPa) and -38MPa(293MPa) on the inner surface of the DMW; where the values in parenthesis are the residual stresses after the DMW. Thermo-mechanical interaction by the SMW has a significant effect on the residual stress fields in the DMW.

  • PDF

Assessment of Resistance Spot Weldability of Dissimilar Joints of Austenitic Stainless Steels/IF Steels and Ferritic Stainless Steels/IF Steels (페라이트계 및 오스테나이트계 스테인리스강과 IF강의 이종 접합부의 저항 점 용접성 평가)

  • Lee, Jin-Beom;Kim, Dong-Cheol;Nam, Dae-Geun;Kang, Nam Hyun;Kim, Soon-Kook;Yu, Ji-Hun;Rhym, YoungMok;Park, Yeong-Do
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.1
    • /
    • pp.64-72
    • /
    • 2011
  • The spot weldability of dissimilar metal joints between austenitic stainless steels (STS316)/IF steels and ferritic stainless steels (STS430)/IF steels was investigated. This study was aimed to determine the spot welding parameters for a dissimilar metal joint and to evaluate the dissimilar metal joint's weldability, including its welding nugget shape, tensile-shear strength, hardness, and microstructure. The comparison of these results was described in terms of fracture behavior. Compared with the weld lobe of similar metal joints, dissimilar metal joints (STS430/IF) had reduced weld current range. However, the weld lobe of STS316/IF steel joint showed increased weld current range. This is because the dilution of chemical composition in the molten weld pool suppressed the heat input being caused by Joule heat with current flow through the samples. The microstructure of the fusion zone was fully martensite and mixture of ferrite and martensite for austenitic stainless steel/IF steel and ferritic stainless steel/IF steel combination, respectively. The experimental results showed that the shape of nugget was asymmetric, in which the fusion zone of the austenitic and ferritic stainless steel sheet was larger due to the higher bulk-resistance. The predicted microstructure by using the Schaeffler diagram was well matched with experimental results. After peel test, the fracture was initiated from heat affected zone of ferritic stainless steel sheet side, however the final fracture was propagated into the IF steel sheet side due to its lower strength.