Nuclear Engineering and Technology 49 (2017) 817—824

Nuclear Engineering and Technology

journal homepage: www.elsevier.com/locate/net

Contents lists available at ScienceDirect

NUCLEAR i
ENGINEERING AND
TECHNOLOGY

Original Article

Estimation of residual stress in welding of dissimilar metals at nuclear
power plants using cascaded support vector regression

—
G) CrossMark

Young Do Koo, Kwae Hwan Yoo, Man Gyun Na*

Department of Nuclear Engineering, Chosun University, 309 Pilmun-daero, Dong-gu, Gwangju 61452, Republic of Korea

ARTICLE INFO

ABSTRACT

Article history:

Received 17 December 2016
Received in revised form

31 January 2017

Accepted 5 February 2017
Available online 24 February 2017

Keywords:

Cascaded Support Vector Regression (CSVR)
Dissimilar Metal Welding

Primary Water Stress Corrosion Cracking
(PWSCC)

Residual Stress

Subtractive Clustering (SC)

Residual stress is a critical element in determining the integrity of parts and the lifetime of welded
structures. It is necessary to estimate the residual stress of a welding zone because residual stress is a
major reason for the generation of primary water stress corrosion cracking in nuclear power plants.
That is, it is necessary to estimate the distribution of the residual stress in welding of dissimilar
metals under manifold welding conditions. In this study, a cascaded support vector regression (CSVR)
model was presented to estimate the residual stress of a welding zone. The CSVR model was serially
and consecutively structured in terms of SVR modules. Using numerical data obtained from finite
element analysis by a subtractive clustering method, learning data that explained the characteristic
behavior of the residual stress of a welding zone were selected to optimize the proposed model. The
results suggest that the CSVR model yielded a better estimation performance when compared with a
classic SVR model.
© 2017 Korean Nuclear Society, Published by Elsevier Korea LLC. This is an open access article under the
CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Factors such as the mechanical attributes of a material, stress
concentration, macrostructure and microstructure, and residual
stress have influences on the structural fatigue life. Among these
factors, residual stress is a critical factor that has an impact on the
life of parts in operating nuclear power plants (NPPs). The residual
stress is a tension or repression that exists in a material even when
external loadings are not imposed, and this residual stress in parts
or structures is generated by incompatible permanent internal
strains. Various industrial substances typically involve residual
stresses generated by heterogeneous plastic deformation due to
heterogeneous heat treatment by welding.

Welding is a major factor that induces residual stress and
typically generates high tensile stresses. The residual stress can
create stress corrosion cracking (SCC) given the existence of three
factors, namely tensile stress, a susceptible material, and a corro-
sive environment. The performance and integrity of welded
structures considerably deteriorate due to residual stress at a
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welding zone. Additionally, residual stress plays a major role in the
occurrence of SCC when it is hard to enhance the material corro-
sivity of the parts and their operating environment [1]. Further-
more, the residual stress of a welding zone is an influential factor
in generating primary water SCC (PWSCC); thus, it is essential to
accurately estimate the residual stress to inhibit the occurrence of
PWSCC.

Several previous studies focused on precisely estimating resid-
ual stresses for dissimilar metals [2—4]. The residual stress esti-
mation technique is computationally challenging and requires
appropriate idealization and the simplification of material
behavior, geometry, and process-related parameters. Numerical
modeling is an ideal method if its results can be verified with
experimental results. For the past 30 years, finite element analysis
(FEA) methods have been utilized to anticipate residual stress
generated by welding. Simulations of welding include thermo-
mechanical FEAs on welding areas [5].

Extant studies estimated residual stress using other artificial
intelligence methods such as fuzzy neural networks (FNN) and
support vector regression (SVR) [2—4]. The SVR methods include a
support vector machine (SVM), which is a learning tool that em-
ploys hypothesis spaces of linear functions in a high dimensional
characteristic space and uses a structural risk minimization tech-
nique. It is termed SVR when an SVM is applied to regression
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analysis. SVR models were used to solve a variety of problems such
as time series forecasting and nonlinear regression [6—9].

The aim of this study is to use a cascaded SVM (CSVM)
regression process to estimate the residual stress of a welding
zone under manifold welding conditions and known pipeline
geometries. The SVM was used for event identification or clas-
sification. Additionally, given the advent of Vapnik’s [10]
e-insensitive loss function, the SVM was widened and exten-
sively used to perform nonlinear regression analysis. The prin-
ciple of the SVR involves mapping input data into a high
dimensional characteristic space and thereby implementing
linear regression analysis in the characteristic space. In this study,
the residual stress for dissimilar metals was estimated in a
relatively accurate manner using cascaded SVR (CSVR) as an
artificial intelligence method. The results indicate that the esti-
mated data obtained using the CSVR model exhibited a better
performance than that of the data in previous studies [2—4]. The
CSVR is a methodology in which SVR modules infer consecutively
and in depth through serial connections.

In this study, to optimize and test the proposed model, it is
necessary to first obtain data on the residual stress of a welding
zone. In internal structures in the primary systems of NPPs, a
reactor pressure vessel and steam generator tube, wherein the
used material is SA508 and a dissimilar metal welding joint be-
tween a nozzle and a pipe, are vulnerable to PWSCC under a
water chemistry environment. Thus, a dissimilar metal welding
joint is considered in the analyses. In a previous study [7], the
relevant data included performing FEAs for manifold welding
conditions, such as the shape of the pipeline, the heat input
during welding, constraints on the pipeline end section, and the
welding metal strength [2]. The residual stress for the welding
joint can be estimated by using data obtained from FEAs. Addi-
tionally, it should be noted that the study focused on utilizing
CSVR to nonlinearly estimate the residual stress of a welding
zone under the assumption that FEA methods are precise. That is,
the study did not focus on the precision of the FEA methods for
the estimation of the residual stress of a welding zone. In the
study, the CSVR methodology was proposed for a dissimilar metal
weld joint between a nozzle and a pipe and was developed to
estimate the residual stress of the weld joint.

2. A methodology to estimate the residual stress

The CSVR method comprises calculation processes of serially
connected SVR modules. That is, the CSVR model calculates rele-
vant variables by adding an SVR module serially and iteratively. All
the SVR modules involve the same calculation process.

2.1. SVR method

In a previous study, the SVR method was utilized to estimate
the residual stress of a dissimilar metal weld joint with respect to
manifold welding conditions [3]. This method optimizes the
weights of neural networks with a kernel function by resolving
the problem of nonconvex unconstrained optimization. The SVM
is a learning tool that utilizes hypothesis spaces of linear func-
tions in high dimensional characteristic spaces, which are learned
through optimization theory with a learning algorithm. When the
SVM is used for regression analysis, it is referred to as SVR. The
primary principle of the SVR method involves nonlinearly con-
verting the initial input data x into a high dimensional charac-
teristic space and performing a linear regression analysis in the
high dimensional characteristic space. This implies that a fixed

nonlinear mapping of the data is applied to a characteristic space
in which a linear machine can be used. This conversion can be
accomplished by employing a variety of nonlinear mapping
methods. The nonlinear regression analysis in the input space is
transformed into a linear regression analysis in the characteristic
space. The SVR model is constructed using N learning data. The
learning data are expressed as {(x(t),y(t)}’tvzl €R™ x R, in which
x(t) denotes the input data vector and y(t) denotes the corre-
sponding output value from which the link between the input
data and the output data is learned. The SVR model can be rep-
resented as follows [11]:

N
y=f®=> wpX) +b=W'dx) +b (1
t=1

where ¢;(x) denotes a feature that is nonlinearly transformed from
the input space x(t), W=[w; w, - wy], and
D=[¢1 ¢ ¢>N}T. The parameter W denotes the weight of
support vectors, and the constant b denotes the bias.

Following the transformation of input data vectors x(t) into
vectors @(x) of a high dimensional kernel-induced characteristic
space, the nonlinear model was changed into a linear regression
model in the characteristic space. A linear learning machine in
which a convex functional is minimized by a learning algorithm
was used to create a nonlinear function. The convex functional was
represented as a regularized risk function. The parameters W and b
are computed by minimizing a regularized risk function that is
expressed as given below [11]:

N
ROW) = JWTW + 1S (1)) ~ y(0), )
t=1

where:

B 0 if [f(x(t)) —y(t)|<e
If (x(t)) = y()], = { Fx(t)) — y(t)| — e d otherwise

(3)

The parameter u is introduced for regularization and is a con-
stant based on a user-specified parameter. The regularization
parameter determines the tradeoff that exists between the norm of
the weight vectors and the estimation error. An increase in the
regularization parameter u imposes more penalties on bigger er-
rors, which results in a decrease in estimation errors. An increase in
the norm of weight vectors could also achieve this in a smooth
manner. However, increasing the norm of the weight vectors does
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Fig. 1. Linear e-insensitive loss function.
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not confirm the optimal generalization property of the SVR model.
The constant ¢ is a user-specified parameter, and the e-insensitive
loss function can be expressed as |f (x(t) ) — y(t)|, as shown in Fig. 1
[10]. The loss corresponds to zero in the case in which the estimated
error |f(x(t)) —y(t)|, was below an error level ¢. That is, the loss
denotes the value at which the error level ¢ is subtracted from the
estimated error |f(x(t)) — y(t)|, in the case when the estimated
error |f(x(t) ) — y(t)|, exceeds an error level ¢ (refer to Figs. 1 and 2).
The extension of the insensitivity zone ¢ signifies a decrease in the
prerequisite for estimation accuracy, and it reduces the number of
support vectors leading to data compression. Furthermore, the
increment of the insensitivity zone ¢ plays a role of smoothening
the highly polluted data.

The aforementioned regularized risk function is changed into a
constrained risk function, as shown below:

R(w, 4, A*) :%wTwwEN:(a(t) +5*(t)) (4)
t=1

subject to the following constraints:

y(t) —WTd(x) —b<e+0(t), t=1,2,--N

{WT¢(x)+b—y(t)§e+6*(t), t=1,2,---\N (5)
8(t), 6 (t) >0, t=1,2,--- N

where

4=[6(1) 82) SN,

L= 5@ - o]

The variables 6(t) and 0" (t) are parameters that denote upper
and lower constraints (refer to Fig. 2). It was possible to resolve the
problem of constrained optimization in Eq. (4) by applying the
Lagrange multiplier method to Eqs. (4) and (5), followed by an
existing quadratic programming method. Finally, the regression
function of Eq. (1) is expressed as follows:

4

y=f@®) =Y (ar—ar)K&, x(t)) +b (6)

In Eq. (6), K(x,x(t)) = ®T (x)®(x(t) ) is termed the kernel func-
tion. Several coefficients (ar —«f) had nonzero values that are
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Fig. 2. Insensitive e-tube and variables 4(i) and 6*(1') for the support vector regression
(SVR) model.

solved by a quadratic programming technique. The learning data
points corresponding to the nonzero values were termed support
vectors and had estimation errors equal to or greater than ¢. That is,
the support vectors correspond to the data points located closest to
the regression function. This study used the following radial basis
kernel function:

T
K(x,%(t)) = exp( _(x— X(t)z)agx —X(t)) ) -

where ¢ represents the sharpness of the radial basis kernel
function.

2.2. CSVR model

A previous study included CSVMs [12] in which the CSVM
involved a repeatedly connected parallel structure. Parallelization
involved splitting the problem into smaller data subsets. Thus, the
parallelized CSVMs were able to efficiently solve the problem.
Furthermore, the data for the CSVM model were concretely divided
into subsets, and each data set was separately evaluated for support
vectors in the initial layer, which was composed of several SVMs.
The results for two subsets were combined and transferred as
learning sets for the next layer, composed of split subsets. The
CSVM model focused on computation speed through
parallelization.

A cascaded structure connected in series was applied to the
CSVR model in the present study. This cascaded structure was used
by several studies. The cascaded structure for the CSVR model was
based on a previous study [13] that applied a cascaded structure to
the FNN model and included an artificial intelligence technique that
was called a cascaded FNN (CFNN). The CSVR model used in the
present study comprised more than two SVR modules, and the
results of the preceding SVR module were transferred to the next
module (refer to Fig. 3). That is, the proposed CSVR model was
continually trained at each SVR module. Thus, this process enabled
the CSVR model to exhibit good performance. The structure of the
proposed CSVR model was different from that of the CSVM model in
the previous study [12].

Fig. 4 shows the design procedure for the CSVR model. The CSVR
model was designed using learning data for which the target output
is already known. An excessive increase in the number of SVR
modules could cause an overfitting problem in the CSVR model. In
other words, the CSVR model was optimized for only one learning
data set; it might not be properly optimized for other data sets. That
is, in cases in which in-depth reasoning proceeded through the serial
connection of the SVR modules, the CSVR method was able to adjust
to very specific arbitrary features of the learning data. In the event of
the occurrence of overfitting, the CSVR performance for the learning
data indicated steady improvement, although its performance
deteriorated with respect to other data sets.

One regularization technique has been optimally utilized as a
machine learning method that was able to avoid the overfitting
problem [14] and that became a popular method to resolve
mathematically ill-posed problems. It was possible to overcome
these overfitting problems through regularization, in which the
CSVR model was verified by using another data set excluding the
learning data set. Thus, the obtained data were segregated into
three data sets: the learning data, verification data, and test
data. The learning data set was used to resolve the support
vector weights «r —a;f and the bias b in Eq. (6) of the SVR
modules. The verification data set was used to cross-validate the
CSVR model to enhance its competence in generalizing the CSVR
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Fig. 3. Cascaded support vector regression (SVR) model.
Start An index to evaluate the occurrence of an overfitting problem at
o the i-th module is expressed as the sum of the squared errors for
i+1—i = the verification data, as follows:
Y Ny ,
, E =Y (y(t) - yi(t) (8)
Add the i-th module of the CSVR =1

Y
Optimize the SVR module
by using the learning data

A J
Cross-check the SVR module
by using the verification data

Opverfitting occurrence?

Fig. 4. Development procedure for the cascaded support vector regression (CSVR)
model.

method. That is, the verification data were used to prevent the
overfitting problem by limiting the number of serially connected
SVR modules. The test data were utilized to verify the developed
CSVR model.

Alloy 82/182

I‘ STS316

where ¥; denotes the estimated output at the i-th SVR module, and
Ny denotes the number of the verification data.

If the condition (E;, 1 < E;) was satisfied, then an SVR module was
added, and the CSVR model optimized the added module. The SVR
module-adding process stopped when E;, ;> E;. However, if the
condition (E;,;>E;) was satisfied, then the sum of the squared
estimation errors for the verification data increased based on the
increase in the number of modules. Following this, if the process of
adding SVR modules continued, then the CSVR model tended to
exhibit overfitting. The SVR module was repeated G times, as shown
in Fig. 3. The number of SVR modules G, denoted the number of
modules that was finally determined to inhibit the overfitting
problem.

3. Applications
3.1. FEA for residual stress

It is necessary to obtain the residual stress data to develop a
CSVR model to estimate the residual stress of a welding zone. An
FEA method to analyze the residual stress of a welding zone was
developed, and parametric FEAs were conducted using the ABAQUS
code [15] to obtain the residual stress data of dissimilar metals
under manifold welding conditions, as shown in a previous study
[2]. The FEAs considered the welding joint of dissimilar metals

SA508

Ry

— a———— |—————>+
Inside path

Fig. 5. Welding area of dissimilar metals and estimation paths in the welding area for data preparation.
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Welding conditions for analyzing the welding stress.

821

Shape of the pipeline

End section constraint Welding heat input,

Yield stress of weld metal,

H (k]/sec) Gys (MPa)
R, (mm) Ry (mm) R/t Pass 1; others
205.6 300.10 4.8778 Restrained 0.49764; 1.2690 192.33
205.6 271.75 6.8763 Free 0.55985; 1.4277 203.06
205.6 256.80 8.8735 0.62205; 1.5863 213.70
0.68426; 1.7449 224.38
0.74646; 1.9036 235.07

between a nozzle and a pipeline, because these joints were
recognized as being exceedingly vulnerable to PWSCC under a
water chemistry environment in the primary systems of NPPs. Fig. 5
includes the enlarged welding zone. Hence, it was assumed that the
basic material for the nozzle corresponded to SA508 ferritic steel
and that the basic material for the pipe corresponded to STS316
austenite stainless steel. The residual stress of a welding zone is
typically affected by several factors, such as the heat input, pipe
thickness, end section constraints of welded pipes, and strength of
welding metals. Therefore, combinations of these factors were
utilized as input data in the parametric FEA analyses. Table 1 lists
the values of the influential parameters and the pipe constraint
conditions.

The finite element simulation for welding theoretically
comprised a thermal analysis, which indicated a thermal process

15
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9@ o) o(g
°7 }0 o e}
. 00 &
. o o ®

O Obtained data
Q X Data cluster centers

0 3 6 9 12 15

Fig. 6. Selected centers of data clusters for simple two-dimensional data.

Table 2

during welding; this was followed by structural analysis based on
the results of the thermal analysis. Thus, a serially connected
analysis of thermal-stress was used to compute the residual stress
of a welding zone. Three types of two-dimensional axisymmetric
finite element models were developed based on pipe thickness [2].

The welding procedure was simulated by a variety of welding
passes for three R,/t values of pipeline shape, which included 11
passes for R,/t = 4.8778, nine passes for R,/t = 6.8763, and eight
passes for Ry/t = 8.8735 [2]. Each bead was considered a welding
pass, such that the number of welding passes corresponded to the
number of beads in the welding simulation.

3.2. Selection of learning data

All 150 FEA conditions including welding heat input, the shape
of the pipeline, the constraint of the pipeline end section, and the
welding metal strength were considered to assess the residual
stress of the welding metal depending on the two paths in the
welding spot (as shown in Fig. 5). Additionally, the residual stress of
the welding zone was computed at 21 locations along all the paths
using the ABAQUS code. Thus, 6,300 data points of the residual
stress for the welding metal were obtained along all the paths, as
shown in Fig. 5. The conditions and values for the analysis are
shown in Table 1.

The CSVR method was developed by learning from the ascribed
data. It was necessary to use learning data to train the CSVR model
well to increase the efficiency of learning. It was expected that the
acquired data, gathered in a manner similar to clusters of grapes,
and the data at the center of each cluster, were more instructive
than adjacent data. For example, Fig. 6 indicates a form of data
clusters and respective cluster centers (“x” symbol) for two-
dimensional input data. In this study, each cluster center was
determined by a subtractive clustering (SC) scheme [16]. The SC
scheme worked by producing several clusters in the m-dimensional
input data space. The SC scheme considered each data point as a
latent cluster center. The potential value of every input data point is
defined as the Euclidean distance function with respect to other
input data points, as follows [16]:

Performance of the cascaded support vector regression (CSVR) model in estimating the residual stress of a welding zone (inside path).

Constraint of end section No. of SVR modules Data type RMS error (%) Relative max. error (%) No. of data points
Restrained 4 Learning 3.574 53.641 1250

Verification 1.362 5.793 260

Test 1.484 7.840 65

Development 3.301 53.641 1250 + 260
Free 10 Learning 2.839 27.804 1250

Verification 2.780 15.255 260

Test 2.519 9.296 65

Development 2.829 27.804 1250 + 260

RMS, root mean square.
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Table 3

Performance of the cascaded support vector regression (CSVR) model in estimating the residual stress of a welding zone (center path).

Constraint of end section No. of SVR modules Data type RMS error (%) Relative max. error (%) No. of data points
Restrained 11 Learning 0.276 2.892 1250

Verification 1.650 11.211 260

Test 1.041 3.406 65

Development 0.729 11.211 1250 + 260
Free 5 Learning 1.339 24936 1250

Verification 0.988 3.610 260

Test 0.980 2.695 65

Development 1.285 24.936 1250 + 260

RMS, root mean square.

N
Py (t) :Ze—4ux<r)—xu>nz/r§7 t=1,2,- N (9)
j=1

where r,, denotes a radius that defines the vicinity between the data
points; this radius has a sizeable influence on the input data po-
tential. The input data point with the highest potential value was
chosen as the first cluster center after the potential values of all
input data were calculated.

Following this, a number of potential values were subtracted
from each data point as a function of each point’s distance from the
prechosen cluster center. The data points positioned near the pre-
chosen cluster center tended to exhibit a considerably decreased
potential value and thus were not selected as the next data cluster
center. When the potential values of every data point were recal-
culated using Eq. (10), the data point with the highest revised data
potential value was selected as the next data cluster center, as
follows:

%112
P (t) = Pi(t) — Pre IO/ _ 12 N (10)

where x;‘ denotes the data point (position) of the i-th cluster center,
and P; denotes its potential value. In the case in which a specified
number of cluster centers are selected, the calculation using Eq.
(10) ceased. Otherwise, the calculation continued iteratively. In this
study, r, and rg were determined such that the number of the
cluster centers was equal to the number of the learning data, and
To = 1.2rg.

The input/output data situated at the cluster centers were uti-
lized as learning data to train the SVR model. The verification data
and test data were selected at fixed intervals among the remaining
data. The verification data and the test data accounted for 80% and
20%, respectively, of the remaining data. The test data, excluding
the learning data and the verification data, were utilized to finally
validate the developed CSVR model.

4. Results and discussion

As previously stated, the CSVR model, consisting of consecu-
tively and serially connected SVR modules, was used to estimate
the residual stress of a welding zone. The CSVR models were
developed depending on the constraints of end sections and the
paths of residual stress estimation as described in Fig. 5. The
calculation of the CSVR model included the repetitive calculation of
each SVR model, because the CSVR model involved the iteration of
the SVR model. That is, throughout the CSVR process, several SVR
modules were equally optimized using the learning data and the
verification data, and the optimized CSVR model was tested using
the test data.

The stress component estimated by the CSVR corresponded to
the effective von Mises stress; other stress components can also be

simply estimated using the CSVR method. The performances of the
CSVR for the inside path and the center path are shown in Tables 2
and 3, respectively. As a result of the performance analysis for the
case of the inside path, the root mean square (RMS) error values of
the estimated residual stress for the restrained constraint and for
the free constraint were found to be 3.30% and 2.83%, respectively,
which indicate the performance for the development data. The
development data involve combined data including learning and

(A) 200

—O— Target
190 R} |—<— Estimation

180

170

160

150

Welding residual stress (MPa)

130 -
1 1 1 1 1
0.00 0.05 0.10 0.15 0.20 0.25 0.30
Normalized distance
B

—O— Target
70 L [—>%— Estimation|

60

50

40

Welding residual stress (MPa)

30

20
0.00 0.05 0.10 0.15 0.20 0.25 0.30

Normalized distance

Fig. 7. Estimation performance of the residual stress of a welding zone based on the
inside path under a specific welding conditions using the cascaded support vector
regression (CSVR). (A) Estimation result under restrained constraint. (B) Estimation
result under free constraint.
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verification data to optimize the CSVR model. The RMS error of the
estimated residual stress for the restrained constraint and the free
constraint were 1.48% and 2.52%, respectively, which indicate the
performance for the test data. Since the development data include
learning data and verification data, it should be noted that the
relative maximum errors of the development data are the
maximum values of the relative maximum errors for the learning
data and the verification data.

As a result of the performance analysis for the center path, the
RMS error values of the estimated residual stress for the restrained
constraint and the free constraint were found to be 0.73% and 1.29%,
respectively, which indicates the performance of the development
data. Additionally, the RMS errors of test data for the restrained
constraint and the free constraint were 1.04% and 0.98%, respec-
tively. Furthermore, the average of the RMS error of the estimated
residual stress corresponded to 2.04% for the development data for
all the end section constraints and residual stress estimation paths
and 1.51% for the test data; this indicated that the CSVR model
exhibited a considerably good estimation performance. Conse-
quently, the CSVR method can provide a good estimate for the re-
sidual stress of a welding zone under all welding conditions.

As stated above, the FEA data were used for training, and it was
noted that these data were assumed to be accurate. It was also

(A) 300
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[
19
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Welding residual stress (MPa)
2

(=
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0.0 0.2 0.4 0.6 0.8 1.0
Normalized distance
(B)
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250 —— Estimation|
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@
(=}

=3
=]

Normalized distance

Fig. 8. Estimation performance of the residual stress of a welding zone based on the
center path under specific welding conditions using the cascaded support vector
regression (CSVR). (A) Estimation result under restrained constraint. (B) Estimation
result under free constraint.

noted that the target solutions also corresponded to the calculation
results of the ABAQUS code. Figs. 7 and 8 provide graphs that show
a comparison of the actual welding residual stress (target value)
and the estimated welding residual stress based on each estimation
path under specific welding conditions. In Figs. 7 and 8, the specific
welding conditions included a weld metal strength = 213.70 MPa,
heat input = 0.62205 kJ/s for the initial welding pass and 1.5863 kJ/
s for other passes, and Ro/t = 4.8778, as shown in Table 1. Fig. 9
shows the RMS error values for the development and the test
data, based on the number of CSVR modules. The RMS error
decreased as the number of CSVR modules increased.

The results confirmed that the proposed SVR model had accu-
rately estimated the residual stress of a welding zone and was su-
perior to the FNN model [2] and the single SVR model [3].

5. Conclusions

In this study, to maintain the performance and integrity of
welded structures, the CSVR model was presented to assess the
residual stress of a welding zone. The proposed CSVR model was
applied to numerical data obtained from the FEA. Additionally, the
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Fig. 9. Estimation performance of the cascaded support vector regression (CSVR)
model for development data and test data versus the number of the CSVR modules
based on each path under the whole set of welding conditions. (A) Root mean square
(RMS) error for the development data. (B) RMS error for the test data.
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CSVR model, based on four welding conditions, was developed
using the development data set, and the developed CSVR model
was then tested using the test data set. The average RMS error for
the test data corresponded to 1.51% for the whole set of welding
conditions, and it was confirmed that the CSVR model is a meth-
odology that can precisely estimate the residual stress of a welding
zone. Several previous studies used other methodologies such as
FNN [2] and SVR [3]. A past study using the SVR model [3] indicated
that the SVR model could be used to estimate the residual stress of a
welding zone and that it performed better than the FNN model. In
the present study, the results indicate that the CSVR model was
superior to the SVR model from the estimation performance
viewpoint. Consequently, the proposed CSVR model is an optimal
model to estimate the residual stress. Therefore, CSVR can be used
to assess welded structure integrity. It can also provide an early
estimate of unfavorable conditions by accurately estimating the
residual stress of the reactor pressure vessel and steam generator
tube; these structures utilize SA508 material and a dissimilar metal
welding joint between the nozzle and the pipeline in the internal
structures of the primary system of NPPs, and are vulnerable to
PWSCC under a water chemistry environment.
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