• Title/Summary/Keyword: Dissimilar material

Search Result 216, Processing Time 0.029 seconds

EFFECTS OF INTERFACE CRACKS EMANATING FROM A CIRCULAR HOLE ON STRESS INTENSITY FACTORS IN BONDED DISSIMILAR MATERIALS

  • CHUNG N.-Y.;SONG C.-H
    • International Journal of Automotive Technology
    • /
    • v.6 no.3
    • /
    • pp.293-303
    • /
    • 2005
  • Bonded dissimilar materials are being increasingly used in automobiles, aircraft, rolling stocks, electronic devices and engineering structures. Bonded dissimilar materials have several material advantages over homogeneous materials such as high strength, high reliability, light weight and vibration reduction. Due to their increased use it is necessary to understand how these materials behave under stress conditions. One important area is the analysis of the stress intensity factors for interface cracks emanating from circular holes in bonded dissimilar materials. In this study, the bonded scarf joint is selected for analysis using a model which has comprehensive mixed-mode components. The stress intensity factors were determined by using the boundary element method (BEM) on the interface cracks. Variations of scarf angles and crack lengths emanating from a centered circular hole and an edged semicircular hole in the Al/Epoxy bonded scarf joints of dissimilar materials are computed. From these results, the stress intensity factor calculations are verified. In addition, the relationship between scarf angle variation and the effect by crack length and holes are discussed.

Numerical Analysis for Growth Behavior of Sawtoothed Interface by the compression of Dissimilar Blocks Twinned (이종재료의 압축에 의한 경계면의 성장거동에 관한 수치해석)

  • 정태훈
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.03b
    • /
    • pp.233-236
    • /
    • 1999
  • In this paper. Compression in the case where dissimilar blocks are twinned variously are carried out in the condition of lubricated interface. The degree of growth is experimentally investigated. Moreover, numerical simulations are carried out by the elastic-plastic FEM for the case of the dissimilar blocks with the initial sawtooth angle of $60^{\circ}$ . The dissimilar blocks are twinned, larger difference between material properties leads smaller growth, and the degreased interface leads smaller growth than that in the lubricated one. Furthermore, by the simulation of compression where dissimilar blocks are twinned, it is confirmed that the tendency of the general deformation pattern is very similar to the experiment.

  • PDF

Prediction Fracture Strength on Adhesively Bonded scarf Joints in Dissimilar Materials (이종재료의 경사접착이음에 대한 파괴강도의 예측)

  • 정남용
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.4 no.4
    • /
    • pp.50-60
    • /
    • 1995
  • Recently advantages joining dissimiliar materials and light weight material techniques have led to increasing use of structural adhesives in the various industries. Stress singulartiy occurs at the interface edges of adhesively bonded dissimilar materials. So it is required to analyze its stress singularity at the interface edges of adhesively bonded joints indissimilar materials. In this paper, the analysis method of stress singularity is studied in detail. Also, effects of the stress singularity at the interface edge of adhesively bonded scarf joints in combinations of dissimilar materials are investigated by using 2-dimensional elastic program of boundary element method. As the results, the strength evaluation method of adhesively bonded dissimilar materials using the stress singularity factor, $\Gamma$,is very useful. The fracture criterion, method of strength evaluation and prediction of fracture strength by the stress singularity factor on the adhesively bonded dissimilar materials are proposed.

  • PDF

Temperature Behavior in Dissimilar Butt Joint During TIG Assisted Friction Stir Welding (TIG-FSW 하이브리드 용접을 이용한 이종재 맞대기 용접부의 온도 분포 특성)

  • Bang, Hee-Seon;Bijoy, M.S.
    • Journal of Welding and Joining
    • /
    • v.29 no.5
    • /
    • pp.63-71
    • /
    • 2011
  • Three-dimensional finite element analysis is performed to study the temperature distribution phenomenon of TIG assisted friction stir welding (TAFSW) between dissimilar plates (Al 6061-T6 and stainless steel 304). TAFSW is a solid-state welding process that integrates TIG (Tungsten Inert Gas) into a friction stir welding (FSW), to preheat the harder material ahead of FSW tool during welding. In order to facilitate the industrial application of welding, 3D numerical modeling of heat transfer has been carried out applying Finite Element Method (FEM). The temperature distribution due to heat generation during TAFSW on dissimilar materials joint is analysed using in-house solver. Moving heat source along with frictional heat between the work specimens and tool surface is considered to calculate the heat input. The analytical model used predicts successfully the maximum welding temperatures that occur on the dissimilar materials during TAFSW. Comparison with the infra red camera and thermocouple measurement results shows that the results from the current numerical simulation have good agreement with the measured data.

Decomposition of Interfacial Crack Driving Forces in Dissimilar Joints

  • Kim, Yun-Jae;Lee, Hyung-Yil
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.1
    • /
    • pp.30-38
    • /
    • 2000
  • This paper presents a framework how to estimate crack driving forces in terms of crack-tip opening displacement and J-integral for mismatched dissimilar joints with interface cracks. The mismatch in elastic, thermal, and plastic hardening properties is not considered, but the mismatch in plastic yield strengths is emphasized here. The main outcome of the present work is that the existing methods to estimate crack driving forces for homogeneous materials can be used with slight modification. Such modification includes (i) mismatch- corrected limit load solutions, and (ii) evaluating the contribution of each material in dissimilar joints to the total crack driving force, which depends on the strength mismatch of the dissimilar joints.

  • PDF

Evaluation Method of Interface Strength in Bonded Dissimilar Materials of AU/Epxy (Al/ Epoxy 이종 접합체에 대한 계면강도의 평가방법)

  • Chung, Nam-Yong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.11
    • /
    • pp.2277-2286
    • /
    • 2002
  • The application of bonded dissimilar materials to industries as automobiles, aircraft, rolling stocks, electronic devices and engineering structures is increasing gradually because these materials, compared to the homogeneous materials, have many advantages for material properties. In spite of such wide applications of bonded dissimilar materials, the evaluation method of quantitative strength considering the stress singularities for its bonded interface has not been established clearly. In this paper, the stress singularity for Bctors and the stress intensity factors were analyzed by boundary element method(BEM) for the scarf joints of Al/Epoxy with and without a crack, respectively. From static fracture experiments of the bonded scarf joints, a fracture criterion and a evaluation method of interface strength in bonded dissimilar materials were proposed and discussed.

Effects of Long-term Artificial-Aging on the Hardness Variation of Dissimilar Metal Weldments (이종금속 용접부의 경도변화에 대한 장시간 인공열화의 영향)

  • Kim, Chung-Seok
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.1
    • /
    • pp.31-37
    • /
    • 2019
  • This study investigates the effects of long-term artificial-aging on hardness variation in the dissimilar metal weldments for nuclear power plant facilities. These dissimilar welds are inevitably required to join the components in nozzle parts of pressurized vessels, such as austenitic stainless steels and ferritic steels. A artificial thermal aging was conducted in an electrical furnace to simulate material degradation at high temperatures. The test materials were held at the temperature of $600^{\circ}C$ for 10000 hours and interrupted at various levels of degraded specimens. The degradation of hardness is a well-known phenomenon resulting from long-term aging or high-temperature degradation of structural materials. In this study, the variation of hardness at each position was different, and complicated in relation to microstructures such as twins, grains, precipitates, phase transformations, and residual stresses in dissimilar weldments. We discussed the variation of hardness in terms of microstructural changes during long-term aging.

Strength Evaluation of Bonded Dissimilar Materials by Using Stress Singularity Factor (응력특이성계수에 의한 이종 접합재료의 강도평가)

  • Jeong, Nam-Yong;O, Bong-Taek
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.7
    • /
    • pp.2087-2096
    • /
    • 1996
  • Recentrly advantages in composite and light weight material techniques have led to the increased use of bonded dissimilar materials such as ceramics/metal bonded joints, IC package, brazing, coating and soldering in the various industries. It is required to analyze the evaluation method of fracture strength and design methodology of bonded joints in dissimilar materials. Stress singularity according to changes of scarf angles for bonded scarf joints in dissimilar materials was investigated by the boundary element method and static experiments. In this paper, effect of the stress singularity factors at the interface edges of scarf joints on various dissmilar materials combinations were investigated by analysis of its stress and stress singularity index using 2-dimensional elastic program of boundary element method. And the variations of stress singularity index by changes for Young's modulus ratios of materials and scarf angles were investigated. Also, it is found that stress singularities at bonded interface edges are disappeared for certain combination of scarf angle in a pair of bonded dissimilar materials. As the results, it is proposed that the strength evaluation by using stress singularity factors, $\Gamma$, considering stress singularity at the interface edges of bonded dissimilar materials, is very useful.

A Study on Heat Flow of Laser-Welded Dissimilar Steel Joints with Gap (틈새가 존재하는 이종강 레이저 용접부의 열유동에 관한연구)

  • Yang, Hae-Sug
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.10 no.3
    • /
    • pp.5-15
    • /
    • 2007
  • A welding structures is generally composed of dissimilar steel materials in order to reduce weight cost, and has a gap to fill the welding agent. Also, heat flow analysis should be fulfilled for structure existing of gap to figure out residual stress which is generated after welding. Since mechanical properties of welding structure composed of dissimilar steel is more fragile than mechanical properties of welding structure consisted of same material, heat flow analysis verifying this should be fulfilled as well. Therefore, on this research, heat flow analysis about dissimilar steel weldment consisted of gap existing AISI304 and AISI630 is practiced so that it could be a basic data of research about mechanical properties of gap existing dissimilar steel welding part which is going to be studied later on. During heat flow analysis, heat input model which based on Gaussian profile and using volume heat flux was newly consisted and applied. In addition, for verifying of analysis on this research, gap existing dissimilar steel weldment which had gap of 0.25mm and was welded using Nd-YAG. The welding profile and temperature distribution for weldment during welding was compared to the result which was gotten through heat flow analysis. Both of those results corresponded each other.