• Title/Summary/Keyword: Display Luminance

Search Result 664, Processing Time 0.025 seconds

Effects of Neon Plasma Emission on Optical Properties of Phosphor Layers in Surface-Type Alternate Current Plasma Display Panel

  • Jang, Sang-Hun;Cho, Ki-Duck;Tae, Heung-Sik;Park, Lee-Soon
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2000.01a
    • /
    • pp.171-174
    • /
    • 2000
  • This study uses neon and xenon gas mixture discharges to determine the effects of the neon plasma emission on the characteristics of visible emission from the stimulation of the red, green, blue(RGB) phosphor layers in a surface-type alternate current plasma display panel(AC PDP). With a mixture of less than 2% xenon to neon, it is found that the luminance changes in the visible emission of the phosphor layers are similar to those of the neon plasma emission. In the range of xenon mix ratio from 2 to 5%, the luminance of the red, green, blue(RGB) phosphor layers decreases with a decrease in the neon plasma emission intensity. However, with a mixture of above 5% xenon to neon, the luminance of the red, green, blue(RGB) phosphor layers increases regardless of a decrease in the neon plasma emission intensity. Furthermore, the color purity of the red, green, blue(RGB) phosphor layers improve as the neon plasma emission intensity decreases. Accordingly, it is concluded that the optical properties of the phosphor layers, including color purity and luminance, depend on the neon plasma discharge emission as well as the visible emission from the stimulation of the phosphor layers.

  • PDF

Development of Deep Learning Structure to Secure Visibility of Outdoor LED Display Board According to Weather Change (날씨 변화에 따른 실외 LED 전광판의 시인성 확보를 위한 딥러닝 구조 개발)

  • Sun-Gu Lee;Tae-Yoon Lee;Seung-Ho Lee
    • Journal of IKEEE
    • /
    • v.27 no.3
    • /
    • pp.340-344
    • /
    • 2023
  • In this paper, we propose a study on the development of deep learning structure to secure visibility of outdoor LED display board according to weather change. The proposed technique secures the visibility of the outdoor LED display board by automatically adjusting the LED luminance according to the weather change using deep learning using an imaging device. In order to automatically adjust the LED luminance according to weather changes, a deep learning model that can classify the weather is created by learning it using a convolutional network after first going through a preprocessing process for the flattened background part image data. The applied deep learning network reduces the difference between the input value and the output value using the Residual learning function, inducing learning while taking the characteristics of the initial input value. Next, by using a controller that recognizes the weather and adjusts the luminance of the outdoor LED display board according to the weather change, the luminance is changed so that the luminance increases when the surrounding environment becomes bright, so that it can be seen clearly. In addition, when the surrounding environment becomes dark, the visibility is reduced due to scattering of light, so the brightness of the electronic display board is lowered so that it can be seen clearly. By applying the method proposed in this paper, the result of the certified measurement test of the luminance measurement according to the weather change of the LED sign board confirmed that the visibility of the outdoor LED sign board was secured according to the weather change.

Spatial Luminance Contrast Sensitivity: Effects of Surround

  • Kim, Youn-Jin;Kim, Hong-Suk
    • Journal of the Optical Society of Korea
    • /
    • v.14 no.2
    • /
    • pp.152-162
    • /
    • 2010
  • This study examined the effects of surround luminance on the shape of the spatial luminance contrast sensitivity function (CSF). The reduction in brightness of uniform neutral patches shown on a computer controlled display screen is also assessed to explain the change of CSF shape. Consequently, a large amount of reduction in contrast sensitivity at middle spatial frequencies can be observed; however, the reduction is relatively small for low spatial frequencies. In general, the effect of surround luminance on the CSF appears similar to that of mean luminance. Reduced CSF responses result in less power of the filtered image; therefore, the stimulus should appear dimmer with a higher surround luminance.

Image Sticking Evaluation Methods for OLED TV Applications

  • Lee, Hun-Jung;Choi, Dong-Wook;Lee, Eun-Jung;Kim, Su-Young;Shin, Mi-Ok;Yang, Sun-A;Lee, Seung-Bae;Lee, Han-Yong;Berkeley, Brian H.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.1077-1080
    • /
    • 2009
  • In this paper, we propose a new method for measuring image sticking of an OLED display using a human visual test. We determined that the perceptual image sticking threshold is 2% of luminance difference at 200 nits and 1% at 100 nits, respectively. Color shift must also be considered when evaluating image sticking, as a ${\Delta}$(u', v') shift of just over 0.002 can be recognized regardless of background brightness. Perception of image sticking is affected by the background level, test pattern, and ambient illumination conditions. The evaluation standard must consider both luminance variation and color shift simultaneously.

  • PDF

An Optical Analysis of Viewing-angle Switchable Display Using ELC Lens (액정 전계 렌즈 기반의 시청구간 전환가능 디스플레이의 광학적 해석)

  • Jeong, Shin-Yong;Park, Woo-Sang
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.4
    • /
    • pp.241-245
    • /
    • 2017
  • This paper proposes a private display that can adjust viewing angles by using an electric-field-driven (EFD) LC Lens. The EFD LC Lens design and simulation were analyzed by using the Extended Jones Matrix Method. The conventional method for attaching a private film to the display was difficult. In order to solve this problem, in this study, by using the EFD LC Lens, we devised a method that can view images more conveniently. We analyzed the luminance and illumination of the optical viewing distance by using the Extended Jones Matrix Method. We also measured the intensity of the viewing angles. The simulation attached the EFD LC Lens to the 14" Full HD RGB stripe wide panel. We calculated the relative luminance distribution and the luminance distribution on the viewing angle of the image at the optimum viewing distance of 60 cm, using the EFD LC Lens and the lenticular lens. The proposed method could be used to design private displays that can adjust the viewing angle of the EFD LC Lens.

Electricla Properties of Xe Plasma Flat Lamp (Xe 플라즈마 평판 램프의 전기적 특성)

  • Choi, Yong-Sung;Cho, Jae-Cheol;Hong, Kyung-Jin;Lee, Woo-Sun;Lee, Kyung-Sup
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.12a
    • /
    • pp.35-38
    • /
    • 2006
  • As a display becomes large recently, Acquisition of high luminance and Luminance uniformity is becoming difficult in the existing CCFL or EEFL backlight system. So, study for a performance enhancement has enforced. but lamp development of flat type is asked for high luminance and a luminance uniformity security in of LCD and area anger trend ultimately. In this paper, we changed a tip shape of an electrode for production by the most suitable LCD backlight surface light source, and confirmed discharge characteristic along discharge gas pressure and voltage, and confirmed electric field distribution and discharge energy characteristic through a Maxwell 2D simulation. Therefore the discharge firing voltage characteristic showed a low characteristic than a rectangular type and round type in case of electrode which used tip of a triangle type, and displayed a discharge electric current as a same voltage was low.

  • PDF

Luminance efficiency of PDP having phosphor layers formed via osmosis coating process

  • Park, Do-Young;Kim, Yong-Seog
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.227-230
    • /
    • 2004
  • Phosphor layers on rear plate of PDP were formed via osmosis coating process in an attempt to improve thickness uniformity of phosphor layer and eventually to enhance luminance and its efficiency of plasma display panel. The phosphor layers were formed uniformly not only on the sidewalls of barrier ribs but also on the dielectric layer of rear plate by the process. The processing parameters affecting the thickness uniformity of the phosphor layer formed by the osmotic coating process were investigated.

  • PDF

Angle of view polarization characterization of LCDs

  • Boher, P.;Bignon, T.;Leroux, T.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08b
    • /
    • pp.1615-1618
    • /
    • 2007
  • Performances of LCDs are generally evaluated in terms of luminance and color versus viewing angle. In the present paper we show that this type of display can be favorably characterized in terms of polarization. We show that ELDIM EZContrast instrument can be used to measure the degree of polarization the light and the ellipticity and polarization direction of the polarized component. This measurement is made versus incidence angle between 0 and $88{\circ}$ and for all the azimuth angles. Important differences between the displays can be detected and related to their internal structures when luminance and color profiles are quite similar.

  • PDF

Efficient Generation of Image Identifiers for Image Database (정지영상 데이터베이스의 효율적 인식자 생성)

  • Park, Je-Ho
    • Journal of the Semiconductor & Display Technology
    • /
    • v.10 no.3
    • /
    • pp.89-94
    • /
    • 2011
  • The image identification methodology associates an image with a unique identifiable representation. Whenever the methodology regenerates an identifier for the same image, moreover, the newly created identifier needs to be consistent in terms of representation value. In this paper, we discuss a methodology for image identifier generation utilizing luminance correlation. We furthermore propose a method for performance enhancement of the image identifier generation. We also demonstrate the experimental evaluations for uniqueness and similarity analysis and performance improvement that have shown favorable results.

A Luminance Compensation Method Using Optical Sensors with Optimized Memory Size for High Image Quality AMOLED Displays

  • Oh, Kyonghwan;Hong, Seong-Kwan;Kwon, Oh-Kyong
    • Journal of the Optical Society of Korea
    • /
    • v.20 no.5
    • /
    • pp.586-592
    • /
    • 2016
  • This paper proposes a luminance compensation method using optical sensors to achieve high luminance uniformity of active matrix organic light-emitting diode (AMOLED) displays. The proposed method compensates for the non-uniformity of luminance by capturing the luminance of entire pixels and extracting the characteristic parameters. Data modulation using the extracted characteristic parameters is performed to improve luminance uniformity. In addition, memory size is optimized by selecting an optimal bit depth of the extracted characteristic parameters according to the trade-off between the required memory size and luminance uniformity. To verify the proposed compensation method with the optimized memory size, a 40-inch 1920×1080 AMOLED display with a target maximum luminance of 350 cd/m2 is used. The proposed compensation method considering a 4σ range of luminance reduces luminance error from ± 38.64%, ± 36.32%, and ± 43.12% to ± 2.68%, ± 2.64%, and ± 2.76% for red, green, and blue colors, respectively. The optimal bit depth of each characteristic parameter is 6-bit and the total required memory size to achieve high luminance uniformity is 74.6 Mbits.