Browse > Article
http://dx.doi.org/10.3807/JOSK.2010.14.2.152

Spatial Luminance Contrast Sensitivity: Effects of Surround  

Kim, Youn-Jin (Digital Media & Communications Research Center, Samsung Electronics Company)
Kim, Hong-Suk (Department of Physics, Daejin University)
Publication Information
Journal of the Optical Society of Korea / v.14, no.2, 2010 , pp. 152-162 More about this Journal
Abstract
This study examined the effects of surround luminance on the shape of the spatial luminance contrast sensitivity function (CSF). The reduction in brightness of uniform neutral patches shown on a computer controlled display screen is also assessed to explain the change of CSF shape. Consequently, a large amount of reduction in contrast sensitivity at middle spatial frequencies can be observed; however, the reduction is relatively small for low spatial frequencies. In general, the effect of surround luminance on the CSF appears similar to that of mean luminance. Reduced CSF responses result in less power of the filtered image; therefore, the stimulus should appear dimmer with a higher surround luminance.
Keywords
Surround luminance effects; Spatial luminance contrast sensitivity; Brightness;
Citations & Related Records

Times Cited By Web Of Science : 2  (Related Records In Web of Science)
Times Cited By SCOPUS : 2
연도 인용수 순위
1 Y. J. Kim, Y. Bang, and H. Choh, “Gradient approach to quantify the gradation smoothness for output media,” J. Electron. Img. 19, 011012 (2010).   DOI   ScienceOn
2 Y. J. Kim, Y. Bang, and H. Choh, “Measurement and modelling of vividness perception and observer preference for color laser printer quality,” J. Img. Sci. Tech. 54, 010501 (2010).   DOI   ScienceOn
3 M. R. Luo, G. Cui, and B. Rigg, “The development of the CIE 2000 colour-difference formula: CIEDE 2000,” Col. Res. Appl. 26, 340-350 (2001).   DOI   ScienceOn
4 L. E. Arend and B. Spehar, “Lightness, brightness and brightness contrast: I. Illumination variation,” Percept. Psychophys. 54, 446-456 (1993).   DOI   ScienceOn
5 L. E. Arend and B. Spehar, “Lightness, brightness and brightness contrast: II. Reflectance variation,” Percept. Psychophys. 54, 457-468 (1993).   DOI   ScienceOn
6 M. E. Rudd and D. Popa, “Stevens’s brightness law, contrast gain control, and edge integration in achromatic color perception: a unified model,” J. Opt. Soc. Am. A 24, 2766-2782 (2007).   DOI   ScienceOn
7 Q. Sun and M. D. Fairchild, “Image quality analysis for visible spectral imaging systems,” J. Img. Sci. Tech. 48, 211-221 (2004).
8 G. Westheimer and J. Liang, “Influence of ocular light scatter on the eye’s optical performance,” J. Opt. Soc. Am. A 12, 1417-1424 (1995).   DOI   ScienceOn
9 P. G. Barten, “Evaluation of subjective image quality with the square-root integral method,” J. Opt. Soc. Am. A 7, 2024-2031 (1990).   DOI
10 ITU-R Rec. BT. 500-10, Methodology for the subjective assessment of the quality of television pictures, Geneva, Switzerland (2002).
11 H. J. Lee, D. W. Choi, E. Lee, S. Y. Kim, M. Shin, S. A. Yang, S. B. Lee, H. Y. Lee, and B. H. Berkeley, “Image sticking methods for OLED TV applications,” in Proc. IMID (Ilsan, Korea, Oct. 2009), pp. 1077-1080.
12 M. R. Luo, G. Cui, and C. Li, “Uniform colour spaces based on CIECAM02 colour appearance model,” Col. Res. Appl. 31, 320-330 (2006).   DOI   ScienceOn
13 P. G. J. Barten, “Resolution of liquid-crystal displays,” SID Digest 22, 772-775 (1991).
14 H. Wallach, “Brightness constancy and the nature of achromatic colors,” J. Exptl. Psychol. 38, 310-324 (1948).   DOI
15 E. G. Heinemann, “Simultaneous brightness induction as a function of inducing and test-field luminances,” J. Exptl. Psychol. 50, 89-96 (1955).   DOI
16 D. Jameson and L. M. Hurvich, “Complexities of perceived brightness,” Science 133, 174-179 (1961).   DOI   ScienceOn
17 R. S. Woodworth and H. Schlosberg, Experimental Psychology (Holt, New York, USA, 1954).
18 D. Jameson and L. M. Hurvich, “Perceived color and its dependence on focal, surrounding, and preceding stimulus variables,” J. Opt. Soc. Am. 49, 890-898 (1959).   DOI
19 M. D. Fairchild and L. Reniff, “Time-course of chromatic adaptation for color-appearance judgements,” J. Opt. Soc. Am. A 12, 824-833 (1995).   DOI   ScienceOn
20 B. Blakeslee, D. Reetz, and M. E. McCourt, “Comping to terms with lightness and brightness: effects of stimulus configuration and instructions on brightness and lightness judgments,” J. Vision 8, 1-14 (2008).
21 W. A. Stiehl, J. J. McCann, and R. L. Savoy, “Influence of intraocular scattered light on lightness-scaling experiments,” J. Opt. Soc. Am. 73, 1143-1148 (1983).   DOI
22 Z. Li, A. K. Bhomik, and P. J. Bos, “Introduction to mobile displays,” in Mobile Displays Technology and Applications (Wiley, Chichester, UK, 2008).
23 Z. Wang and A. C. Bovik, Modern Image Quality Assessment (Morgan & Claypool Publishers, NJ, USA, 2006).
24 S. Palmer, Vision Science: Photons to Phenomenology (MIT Press, Cambridge, MA, USA, 1999).
25 S. Daly, “The visible differences predictor: an algorithm for the assessment of image fidelity,” in Digital Images and Human Vision, A. B. Watson, ed. (MIT Press, Cambridge, MA, USA, 1993).
26 X. M. Zhang and B. A. Wandell, “A spatial extension to CIELAB for digital color image reproduction,” SID Digest 27, 731-734 (1996).
27 E. Peli, “Test of a model of foveal vision by using simulations,” J. Opt. Soc. Am. A 13, 1131-1138 (1996).   DOI   ScienceOn
28 E. Peli, “Contrast sensitivity function and image discrimination,” J. Opt. Soc. Am. A 18, 283-293 (2001).   DOI   ScienceOn
29 G. Yoon and D. R. Williams, “Visual performance after correcting the monochromatic and chromatic aberrations of the eye,” J. Opt. Soc. Am. A 19, 266-275 (2002).   DOI   ScienceOn
30 Y. J. Kim, M. R. Luo, W. Choe, H. S. Kim, S. O. Park, Y. Baek, P. Rhodes, S. Lee, and C. Kim, “Factors affecting the psychophysical image quality evaluation of mobile phone display: the case of transmissive LCD,” J. Opt. Soc. Am. A 25, 2215-2222 (2008).   DOI   ScienceOn
31 Y. J. Kim, M. R. Luo, P. Rhodes, S. Westland, W. Choe, S. Lee, S. Lee, Y. Kwak, D. Park, and C. Kim, “Imagecolour quality modelling under various surround conditions for a 2-inch mobile transmissive LCD,” J. Soc. Inf. Dis. 15, 691-698 (2007).   DOI
32 S. Kitaguchi, L. MacDonald, and S. Westland, “Evaluating contrast sensitivity,” Proc. SPIE 6057, 22-31 (2006).
33 A. M. Rohaly and C. Owsley, “Modeling the contrastsensitivity functions of older adults,” J. Opt. Soc. Am. A 10, 1591-1599 (1993).   DOI
34 M. J. Wright and A. Johnston, “Spatiotemporal contrast sensitivity and visual field locus,” Vision Res. 23, 983-989 (1983).   DOI   ScienceOn
35 S. Pardhan, “Contrast sensitivity loss with aging: sampling efficiency and equivalent noise at different spatial frequencies,” J. Opt. Soc. Am. A 21, 169-175 (2004).   DOI   ScienceOn
36 J. Rovamo, V. Virsu, and R. Nasanen, “Cortical magnification factor predicts the photopic contrast sensitivity of peripheral vision,” Nature 271, 54-56 (1978).   DOI   ScienceOn
37 J. J. Koenderink, M. A. Bouman, A. E. B. de Mesquita, and S. Slappendale, “Perimetry of contrast detection thresholds of moving spatial sine wave patterns, Parts I. The near peripheral visual field (eccentricity 0-8),” J. Opt. Soc. Am. 68, 845-865 (1979).   DOI
38 A. Johnston, “Spatial scaling of central and peripheral contrast-sensitivity functions,” J. Opt. Soc. Am. A 4, 1583-1593 (1987).   DOI
39 M. D. Fairchild and G. M. Johnson, “Measurement and modeling of adaptation to noise in image,” J. Soc. Inf. Dis. 15, 639-647 (2007).   DOI
40 K. B. Burton, C. Owsley, and M. E. Sloane, “Aging and neural spatial contrast sensitivity: photopic vision,” Vision Res. 33, 939-946 (1993).   DOI   ScienceOn
41 D. M. Snodderly, R. S. Weinhaus, and J. C. Choi, “Neuralvascular relationships in central retina of macaque monkeys (Macaca fascicularis),” J. Neurosci. 12, 1169-1193 (1992).
42 M. J. Cox, J. H. Norma, and P. Norman, “The effect of surround luminance on measurements of contrast snesitivity,” Ophthal. Physiol. Opt. 19, 401-414 (1999).   DOI
43 A. B. Watson, “Visual detection of spatial contrast patterns:evaluation of five simple models,” Opt. Exp. 6, 12-33 (2000).   DOI
44 A. S. Patel, “Spatial resolution by the human visual system,” J. Opt. Soc. Am. 56, 689-694 (1966).   DOI
45 E. Martinez-Uriegas, J. O. Larimer, J. Lubin, and J. Gille, “Evaluation of image compression artefacts with ViDEOS, a CAD system for LCD color display design and testing,” Proc. SPIE 2411, 74-82 (1995).   DOI
46 P. G. J. Barten, Contrast Sensitivity of the Human Eye and Its Effects on Image Quality (SPIE Press, Bellingham, WA, USA, 1999).
47 A. M. Rohaly and G. Buchsbaum, “Global spatiochromatic mechanism accounting for luminance variations in contrast sensitivity functions,” J. Opt. Soc. Am. A 6, 312-317 (1989).   DOI
48 R. L. de Valois, H. Morgan, and D. M. Snodderly, “Psychophysicalstudies of monkey vision – III. Spatial luminance contrast sensitivity tests of macaque and human observers,” Vision Res. 14, 75-81 (1974).   DOI   ScienceOn
49 C. Owsley, R. Sekuler, and D. Siemsen, “Contrast sensitivity throughout adulthood,” Vision Res. 23, 689-699 (1983).   DOI   ScienceOn
50 U. Tulunay-Keesey, J. N. V. Hoever, and C. Terkla-McGrane, “Threshold and suprathreshold spatiotemporal response throughout adulthood,” J. Opt. Soc. Am. A 5, 2191-2200 (1988).   DOI
51 K. E. Higgins, M. J. Jaffe, R. C. Caruso, and F. DeMonasterio, “Spatial contrast sensitivity: effects of age, test-retest, and psychophysical method,” J. Opt. Soc. Am. A 5, 2173-2180 (1988).   DOI
52 E. Martinez-Uriegas, Spatial and Temporal Problems of Colorimetry (CIE, Vienna, Switzerland, 2006), Chapter 3.
53 F. W. Campbell and J. G. Robson, “Application of Fourier analysis to the visibility of gratings,” J. Physiol. 197, 551-566 (1968).   DOI
54 F. W. Campbell and D. G. Green, “Optical and retinal factors affecting visual resolution,” J. Physiol. 181, 576-593 (1965).   DOI
55 D. M. Dacey and B. B. Lee, “The blue-on opponent pathway in the primate retina originates from a distinct bistratified ganglion cell,” Nature 367, 731-735 (1994).   DOI   ScienceOn
56 F. L. van Nes and M. A. Bouman, “Spatial modulation transfer in the human eye,” J. Opt. Soc. Am. 57, 401-406 (1967).   DOI
57 C. Enroth-Cugell and J. G. Robson, “The contrast sensitivity of retinal ganglion cells of the cat,” J. Physiol. 187, 517-552 (1966).   DOI
58 O. Braddick, F. W. Campbell, and J. Atkinson, “Channels in vision: basic aspects,” in Handbook of Sensory Physiology, R. Held, H. W. Leibowitz, and H.-L. Teuber, eds. (Springer-Verlag, New York, USA, 1978), vol. 8.
59 N. Graham, “Spatial-frequency channels in human vision: detecting edges without edge-detectors,” in Visual Coding and Adaptability, C. S. Harris, ed. (Erlbaum, Hillsdale, NJ, USA, 1980).
60 O. H. Schade, “Optical and photoelectric analog of the eye,” J. Opt. Soc. Am. 46, 721-739 (1956).   DOI
61 S. Westland, H. Owens, V. Cheung, and I. Paterson-Stephens, “Model of luminance contrast-sensitivity function for application to image assessment,” Col. Res. Appl. 31, 315-319 (2006).   DOI   ScienceOn
62 B. A. Wandell, Foundations of Vision (Sinauer Associates, Sunderland, MA, USA, 1995).