• Title/Summary/Keyword: Displacement-strain relationship

Search Result 119, Processing Time 0.038 seconds

Evaluation of the Tensile Properties of Fuel Cladding at High Temperatures Using a Ring Specimen (링 시험편을 이용한 피복관의 고온 인장특성 평가)

  • Bae Bong-Kook;Koo Jae-Mean;Seok Chang-Sung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.4 s.235
    • /
    • pp.600-605
    • /
    • 2005
  • In this study, the ring tensile test at high temperature was suggested to evaluate the hoop tensile properties of small tube such as the cladding in the nuclear reactor Using the Arsene's ring model, the ring tensile test was performed and the test data were calibrated. From the result of the ring test with strain gauge and the numerical analysis with 1/8 model, LCRR(load-displacement conversion relationship of ring specimen) was determined. We could obtain the hoop tensile properties by means of applying the LCRR to the calibrated data of the ring tensile test. A few difference was observed in view of the shape of fractured surface and the fracture mechanism between at the high temperature and at the room temperature.

Hyperelastic Finite Element Formulation using Pressure Potential (압력포텐샬을 이용한 초탄성 유한요소 정식화)

  • Kim, Heon-Young;Kim, Ho;Kim, Joong-Jae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.12
    • /
    • pp.2492-2502
    • /
    • 2002
  • A rubber-like material model is generally characterized by hyperelasticity and formulated by a total stress-total strain relationship because the material shows nonlinear elastic behaviour under large deformation. In this study, a pressure potential obtained by a separately interpolated pressure is introduced to the non-linear finite element formulation incorporating with incompressible or almost incompressible condition of the material. The present formulation is somewhat different from the general formulation using the pressure computed in the displacement field. A non-linear finite element analysis program is developed for the plane strain and the axisymmetric contact problems of a rubber-like material. Various examples with rubber material are analyzed for its verification. The results about deformed shapes and stress distributions thought to be meaningful in comparison with a commercial program, MARC.

The Development of Evaluating Tensile Property Method used the Single Notched Ring Test (단일노치 링시험편을 이용한 인장 특성 평가방법 개발)

  • Bae, Bong-Kook;Koo, Jae-Mean;Seok, Chang-Sung
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.322-327
    • /
    • 2003
  • In this study, the single notched specimen which was proposed the previous study was used to evaluate of the transverse tensile property of zircaloy cladding. The single notched specimen has notches which give stress intensity effect, so both FEM and experiment are needed for the same time. Take a coincidence of tensile behavior about both FEM and experiment, then obtain stress and strain from FEM only. The influence of notch was estimated by comparing the result of experimental, FEM. Then the relationship between stress-strain and displacement was evaluated.

  • PDF

Analytical Study of Reinforced Concrete Beams Strengthened with Fiber Reinforced Plastic Laminates (적층판으로 보강된 철근콘크리트보에 대한 해석적 연구)

  • Chae, Seoung-Hun;Kang, Joo-Won
    • 한국공간정보시스템학회:학술대회논문집
    • /
    • 2004.05a
    • /
    • pp.206-211
    • /
    • 2004
  • This paper deals with the flexural strengthening of reinforced concrete beams by means of thin fiber reinforced plastic(FRP) laminas. This study focuses on modeling of structural of concrete bonded FRP laminate in flexural bending members. Used computational equation is derived by relation of stress and strain. The section analysis is based on experimental observations of a linear strain distribution in the cross section until failure, and a multi-linear moment-deflection curve that is divided into four regions, each terminated by a similarly numbered point. The load-deflection relationship in each region is assumed to be linear. The present model is validated to compare wit the experiment of 4-point bending tests of R/C rectangular beams strengthened with CFRP laminates, and has well predicted the moment-displacement relationships of members.

  • PDF

Development of Analysis Technique for Structural Behavior of Containment with Bonded-Type Tendons (FRANCE Type) (원전 부착식 텐던 격납건물의 구조거동 분석기법 개발II - FRANCE형)

  • Lee, Sang-Keun;Park, Sang-Soon;Lee, Sang-Min;Woo, Sang-Kyun;Song, Young-Chul
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.671-674
    • /
    • 2004
  • In this study a program 'SAPONC-FRANCE' which is able to evaluate and analysis the elastic behavior property of the domestic FRANCE type containment under pressurization and depressurization in periodic structural integrity test (SIT) was developed. The readings of EAU system that is composed of the pendulum, invar-wire, leveling-pot, bench-mark, thermocouples and acoustic strain gauges were used as input data for operating the program. This program provides the prediction lines and bands of the pressure-strain(or displacement) relationship of concrete due to the changing of inner volume under pressurization and depressurization in SIT of the domestic FRANCE type containment.

  • PDF

A STUDY ON CLASS II COMPOSITE RESIN CAVITY USING FINITE ELEMENT STRESS ANALYSIS (유한요소법을 이용한 2급 복합레진 와동의 비교 연구)

  • Rim, Young-Il;Yo, In-Ho;Um, Chung-Moon
    • Restorative Dentistry and Endodontics
    • /
    • v.22 no.1
    • /
    • pp.428-446
    • /
    • 1997
  • Restorative procedures can lead to weakening tooth due to reduction and alteration of tooth structure. It is essential to prevent fractures to conserve tooth. The resistance to fracture of the restored tooth may be influenced by many factors, among these are the cavity dimension and the physical properties of the restorative material. The placement of direct composite resin restorations has generally been found to have a strengthening effect on the prepared teeth. It is the purpose of this investigation to study the relationship between the cavity isthmus and the fracture resistance of a tooth in composite resin restorations. In this study, MO cavity was prepared on maxillary first premolar. Three dimensional finite element models were made by serial photographic method and isthmus(1/4, 1/3, 1/2 of intercuspal distance) were varied. Two types of model(B and R model) were developed. B model was assumed perfect bonding between the restoration and cavity wall and R model was left unfilled. A load of 500N was applied vertically at the first node from the lingual slope of the buccal cusp tip. This study analysed the displacement, 1 and 2 direction normal stress and strain with FEM software ABAQUS Version 5.2 and hardware IRIS 4D/310 VGX Work-station. The results were as follows : 1. Displacement of buccal cusp in R model occurred and increased as widening of the cavity, and displacement in B model was little and not influenced by cavity width. 2. There was a significant decrease of stress resulting in increase of fracture resistance in B model when compared with R model. 3. With the increase of the isthmus width, B model showed no change in the stress and strain. In R model, the stress and strain increased both in the area of buccal-pulpal line angle and the buccal side of marginal ridge, therefore the possibility of crack increased. 4. The stress and strain were distributed evenly on the tooth in B model, but in R model, were concentrated on the buccal side of the distal marginal ridge and buccal-pulpal line angle, therefore the possibility of fracture increased.

  • PDF

The Development of Displacement Analysis System in High Strength Concrete Members (고강도콘크리트 구조부재의 변위해석시스템 개발연구)

  • 장일영
    • Computational Structural Engineering
    • /
    • v.8 no.2
    • /
    • pp.115-121
    • /
    • 1995
  • The object of this study is to propose a rational method of resistance strength and flexural deformation for structures using high strength concrete(400-700kgf/cm/sup 2/). The material property(stress-strain relationship) is to be modelize using regression analysis of experimental result. And the applicability of trapezoidal stress model is to be verified. An analytical method is used by the moment-curvature relationship which is based on stress-strain relationships of material for discreted element of section. The evaluation method of moment-curvature of high strength concrete structures is also proposed by using the Monte Carlo Simulation based on a probabilistic concept that could minimize an error due to iterated calculations and random variable of material properties.

  • PDF

Development of Strain-softening Model for Geosynthetic-involved Interface Using Disturbed State Concept (DSC를 이용한 토목섬유가 포함된 경계면의 변형율 연화 모델 개발)

  • Woo, Seo-Min;Park, Jun-Boum;Park, Inn-Joon
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.5
    • /
    • pp.223-232
    • /
    • 2003
  • In this study, a constitutive model called the disturbed state concept (DSC) was modified to be applied to the interface shear stress-displacement relationship between geosynthetics. The DSC model is comprised of two reference states, namely the relative intact (RI) and the fully adjusted (FA) state, and one function, namely the disturbance function. This model is a unified approach and can allow for various models as an RI state such as elastic-perfectly plastic model, hierarchical model, and so on. In addition, by using this model, the elastic and plastic displacements can be considered simultaneously. Comparisons between the measured data and predicted results through the parameters determined from four sets of large direct shear tests showed good agreements with each other, especially for the smooth geomembrane-involved interface. Although there are slight differences at peak shear strength for textured geomembrane-involved interface, this model can still be useful to predict the position of displacement at peak strength and the large displacement (or residual) shear strength.

Analysis of Ship Hull Plate Bending By Roll Bending Machine (Roll bending machine에 의한 선체외판의 곡면가공 해석)

  • Kim, You-Il;Shin, Jong-Gye;Lee, Jang-Hyun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.33 no.4
    • /
    • pp.142-149
    • /
    • 1996
  • Pyramid type three roll bending machines are widely used in roll-bending process to produce singly curved plate. In forming singly curved plate, controlling the vertical displacement of the center roller is most important to acquire the shape required and automation system of the process. In this paper roller bending process is modeled as an elastic-plastic phenomenon and analyzed using beam theory and finite element method. In finite element analysis the workpiece is modeled by using beam elements and plane strain elements respectively. Through the analyses vertical center roller displacement is obtained to get constant curvature distribution along arc length. The relationship between center roller displacement and curvature in steady state as well as residual stress and strain along plate thickness direction are calculated through finite element analysis.

  • PDF

Design Approach for Boundary Element of Flexure-Governed RC Slender Shear Walls Based on Displacement Ductility Ratio (휨 항복형 철근콘크리트 전단벽의 경계요소설계를 위한 변위연성비 모델제시)

  • Mun, Ju-Hyun;Yang, Keun-Hyeok
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.6
    • /
    • pp.687-694
    • /
    • 2014
  • This study established a displacement ductility ratio model for ductile design for the boundary element of shear walls. To determine the curvature distribution along the member length and displacement at the free end of the member, the distributions of strains and internal forces along the shear wall section depth were idealized based on the Bernoulli's principle, strain compatibility condition, and equilibrium condition of forces. The confinement effect at the boundary element, provided by transverse reinforcement, was calculated using the stress-strain relationship of confined concrete proposed by Razvi and Saatcioglu. The curvatures corresponding to the initial yielding moment and 80% of the ultimate state after the peak strength were then conversed into displacement values based on the concept of equivalent hinge length. The derived displacement ductility ratio model was simplified by the regression approach using the comprehensive analytical data obtained from the parametric study. The proposed model is in good agreement with test results, indicating that the mean and standard deviation of the ratios between predictions and experiments are 1.05 and 0.19, respectively. Overall, the proposed model is expected to be available for determining the transverse reinforcement ratio at the boundary element for a targeted displacement ductility ratio.