A STUDY ON CLASS II COMPOSITE RESIN CAVITY USING FINITE ELEMENT STRESS ANALYSIS

유한요소법을 이용한 2급 복합레진 와동의 비교 연구

  • Rim, Young-Il (Department of Conservative Dentistry, College of Dentistry, Seoul National University) ;
  • Yo, In-Ho (Department of Conservative Dentistry, College of Dentistry, Seoul National University) ;
  • Um, Chung-Moon (Department of Conservative Dentistry, College of Dentistry, Seoul National University)
  • 임영일 (서울대학교 치과대학 치과보존학 교실) ;
  • 여인호 (서울대학교 치과대학 치과보존학 교실) ;
  • 엄정문 (서울대학교 치과대학 치과보존학 교실)
  • Published : 1997.04.08

Abstract

Restorative procedures can lead to weakening tooth due to reduction and alteration of tooth structure. It is essential to prevent fractures to conserve tooth. The resistance to fracture of the restored tooth may be influenced by many factors, among these are the cavity dimension and the physical properties of the restorative material. The placement of direct composite resin restorations has generally been found to have a strengthening effect on the prepared teeth. It is the purpose of this investigation to study the relationship between the cavity isthmus and the fracture resistance of a tooth in composite resin restorations. In this study, MO cavity was prepared on maxillary first premolar. Three dimensional finite element models were made by serial photographic method and isthmus(1/4, 1/3, 1/2 of intercuspal distance) were varied. Two types of model(B and R model) were developed. B model was assumed perfect bonding between the restoration and cavity wall and R model was left unfilled. A load of 500N was applied vertically at the first node from the lingual slope of the buccal cusp tip. This study analysed the displacement, 1 and 2 direction normal stress and strain with FEM software ABAQUS Version 5.2 and hardware IRIS 4D/310 VGX Work-station. The results were as follows : 1. Displacement of buccal cusp in R model occurred and increased as widening of the cavity, and displacement in B model was little and not influenced by cavity width. 2. There was a significant decrease of stress resulting in increase of fracture resistance in B model when compared with R model. 3. With the increase of the isthmus width, B model showed no change in the stress and strain. In R model, the stress and strain increased both in the area of buccal-pulpal line angle and the buccal side of marginal ridge, therefore the possibility of crack increased. 4. The stress and strain were distributed evenly on the tooth in B model, but in R model, were concentrated on the buccal side of the distal marginal ridge and buccal-pulpal line angle, therefore the possibility of fracture increased.

Keywords

Acknowledgement

Supported by : 서울대학교병원