• Title/Summary/Keyword: Displacement reaction

Search Result 287, Processing Time 0.026 seconds

Nonlinear response of laterally loaded rigid piles in sand

  • Qin, Hongyu;Guo, Wei Dong
    • Geomechanics and Engineering
    • /
    • v.7 no.6
    • /
    • pp.679-703
    • /
    • 2014
  • This paper investigates nonlinear response of 51 laterally loaded rigid piles in sand. Measured response of each pile test was used to deduce input parameters of modulus of subgrade reaction and the gradient of the linear limiting force profile using elastic-plastic solutions. Normalised load - displacement and/or moment - rotation curves and in some cases bending moment and displacement distributions with depth are provided for all the pile tests, to show the effect of load eccentricity on the nonlinear pile response and pile capacity. The values of modulus of subgrade reaction and the gradient of the linear limiting force profile may be used in the design of laterally loaded rigid piles in sand.

Al2O3/Al Composites Fabricated by Reaction between Sintered SiO2 and Molten Al (실리카 소결체와 용융 알루미늄과의 반응에 의한 $Al_2$O$_3$/Al 복합체의 제조)

  • 정두화;배원태
    • Journal of the Korean Ceramic Society
    • /
    • v.35 no.9
    • /
    • pp.923-932
    • /
    • 1998
  • Al2O3/Al composites were produced by displacement reaction method which was carried out by imm-ersing the sintered silica preform which was prepared form fused silica powder in molten aluminu. an ac-tivation energy of 94kJ/mole was calculated from Al-SiO2 reaction data in 1000-130$0^{\circ}C$ temperature range With increase of reaction temperature the alumina particle in the Al2O3/Al composites produced with pur metal Al showed grain growth and the growth of alumina particle in Al2O3/Al composite produced by using of Mg contained Al alloy was inhibited. The flexural strength of Al2O3/Al composites produced at 100$0^{\circ}C$ showed the highest value as 393 MPa. Flexural strength of the composite fabricated at 85$0^{\circ}C$ showed higher deviation than that of the composite produced at above 100$0^{\circ}C$ Low flexural strength of the composite fa-bricated at 120$0^{\circ}C$ due to the growth of pore and alumina particle size. The hardness of composites de-pended on alumina content in Al2O3/Al composite decreased with increasing of aluminium content in case the same alumina content and increased with increasing of silicon content in composite.

  • PDF

A Study on the Stimulus Reaction of PBLG (PBLG의 자격반응에 관한 연구)

  • Kim, Beyung-Geun;Chang, Hun;Lee, Kyung-Sup
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07b
    • /
    • pp.719-722
    • /
    • 2002
  • The Displacement current measurement system used in this experiment because detecting the dynamic behavior of monolayers at the air-water interface is possible. It basically consists of a film balance, a pair of electrodes connected to each other through a sensitive ammeter. Here, one electrode is suspended in air and the other electrode is placed in the water. PBLG phase transformation measured by Maxwell-displacement-current-measurement method in surface of the water. Measured (surface pressure, displacement current and dipole moment) of monolayers of PBLG on the water surface. We measured displacement current that occur when changed temperature. Could know that displacement current is proportional in increase of temperature and great as experiment result.

  • PDF

An Analytical Study on Inclination of Vertical Piles (연직말뚝의 경사도 오차에 관한 해석적 연구)

  • 장정욱;박춘식;최차석
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2003.03a
    • /
    • pp.463-468
    • /
    • 2003
  • This paper studied the effects of inclination of piles on pile behaviors. The following are the conclusions of this study. (1) When all the piles are inclined to a same direction, the piles reaction, maximum moment and horizontal displacement of footing increase as the angle of inclination increases. (2) When the piles of each opposite side are inclined symmetrically, the vertical reaction either increases or decreases in proportion to the angle of inclination. In this case, the vertical reaction of inclined piles decreases but the vertical reaction of non-Inclined piles increases.

  • PDF

Application of Seismic Base Isolation With Anti-Uplift Device for Arch Structure (아치 구조물의 지진응답 제어를 위한 들림방지 면진장치의 적용)

  • Kim, Gee-Cheol;Lee, Joon-Ho
    • Journal of Korean Association for Spatial Structures
    • /
    • v.20 no.4
    • /
    • pp.169-176
    • /
    • 2020
  • When an unexpected excessive seismic load is applied to the base isolation of arch structure, the seismic displacement of the base isolation may be very large beyond the limit displacement of base isolation. These excessive displacement of the base isolation causes a large displacement in the upper structure and large displacement of upper structure causes structural damage. Therefore, in order to limit the seismic displacement response of the base isolation, it is necessary to install an additional device such as an anti-uplift device to the base isolation. In this study, the installation direction of the base isolation and the control performance of the base isolation installed anti-uplift device were investigated. The installation direction of the base isolation of the arch structure is determined by considering the horizontal and vertical reaction forces of the arch structure. In addition, the separation distance of the anti-uplift device is determined in consideration of the design displacement of the base isolation and the displacement of the arch structure.

Hydrogen Surface Coverage Dependence of the Reaction between Gaseous and Chemisorbed Hydrogen Atoms on a Silicon Surface

  • Ree, Jong-Baik;Chang, Kyung-Soon;Kim, Yoo-Hang
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.2
    • /
    • pp.205-214
    • /
    • 2002
  • The reaction of gas-phase atomic hydrogen with hydrogen atoms chemisorbed on a silicon surface is studied by use of the classical trajectory approach. Especially, we have focused on the mechanism changes with the hydrogen surface coverage difference. On the sparsely covered surface, the gas atom interacts with the preadsorbed hydrogen atom and adjacent bare surface sites. In this case, it is shown that the chemisorption of H(g) is of major importance. Nearly all of the chemisorption events accompany the desorption of H(ad), i.e., adisplacement reaction. Although much less important than the displacement reaction, the formation of $H_2(g)$ is the second most significant reaction pathway. At gas temperature of 1800 K and surface temperature of 300 K, the probabilities of these two reactions are 0.750 and 0.065, respectively. The adsorption of H(g) without dissociating H(ad) is found to be negligible. In the reaction pathway forming $H_2$, most of the reaction energy is carried by $H_2(g)$. Although the majority of $H_2(g)$ molecules are produced in sub-picosecond, direct-mode collisions, there is a small amount of $H_2(g)$ produced in multiple impact collisions, which is characteristic of complex-mode collisions. On the fully covered surface, it has been shown that the formation of $H_2(g)$ is of major importance. All reactive events occur on a subpicosecond scale, following the Eley-Rideal mechanism. At gas temperature of 1800 K and surface temperature of 300 K, the probability of the $H_2(g)$ formation reaction is 0.082. In this case, neither the gas atom trapping nor the displacement reaction has been found.

Analysis of the lateral displacement to the Large Diameter Bored Pile based on the application of the Lateral coefficient of subgrade reaction (수평지반반력계수에 따른 대구경 현장타설말뚝의 수평변위 분석)

  • Chae, Young-Su;Kim, Nam-Ho;Bang, Ei-Souk;Lee, Kyoung-Jea
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.10a
    • /
    • pp.528-535
    • /
    • 2005
  • Using the case of design to the Large diameter Bored Pile, We showed the various method to estimate the Lateral coefficient of subgrade reaction and analyzed the lateral displacement behavior according to the characteristics of sub layer distribution. According to the study, Mutual relation to the N value and the soil modulus of deformation showed 400N to 800N to the fine grained soil and weathered soil. It showed simular tendancy with the proposed expression of Schmertmann. But Weathered rock was over estimated as 4,200N. $k_h$ to the sedimentory soil and weathered rock each showed these orded of Schmertmann-PMT-2,800N and Schmertmann-2,800N-PMT. As the factor($\alpha$) 4 was applied to the estimation in weathered rock, $k_h$ to the PMT was calculate as a big value. If the pile is long and the pile is surpported to the soil, Lateral displacement was in inverse proportion ratio to the value of $k_h$. But the case of shallow soil layer(early bedrock) and the short pile, Lateral displacement was affected by the behavior of socheted pile to the bedrock not by the upper soil layer.

  • PDF

Propriety Examination of Expansion Joint Spacing of Airport Concrete Pavement by Weather and Material Characteristics (기상과 재료 특성에 의한 공항 콘크리트 포장 팽창줄눈 간격의 적정성 검토)

  • Park, Hae Won;Jeong, Jin Hoon
    • International Journal of Highway Engineering
    • /
    • v.20 no.3
    • /
    • pp.65-73
    • /
    • 2018
  • PURPOSES : In this study, the propriety of expansion joint spacing of airport concrete pavement was examined by using weather and material characteristics. METHODS : A finite element model for simulating airport concrete pavement was developed and blowup occurrence due to temperature increase was analyzed. The critical temperature causing the expansion of concrete slab and blow up at the expansion joint was calculated according to the initial vertical displacement at the joint. The amount of expansion that can occur in the concrete slab for 20 years of design life was calculated by summing the expansion and contraction by temperature, alkali-silica reaction, and drying shrinkage. The effective expansion of pavement section between adjacent expansion joints was calculated by subtracting the effective width of expansion joint from the summation of the expansion of the pavement section. The temperature change causing the effective expansion of pavement section was also calculated. The effective expansion equivalent temperature change was compared to the critical temperature, which causes the blowup, according to expansion joint spacing to verify the propriety of expansion joint applied to the airport concrete pavement. RESULTS : When an initial vertical displacement of the expansion joint was 3mm or less, the blowup never occurred for 300m of joint spacing which is used in Korean airports currently. But, there was a risk of blow-up when an initial vertical displacement of the expansion joint was 5mm or more due to the weather or material characteristics. CONCLUSIONS : It was confirmed that the intial vertical displacement at the expansion joint could be managed below 3mm from the previous research results. Accordingly it was concluded that the 300m of current expansion joint spacing of Korean airports could be used without blowup by controling the alkali-silica reaction below its allowable limit.

Phase Transfer Catalytic Effects for Thiocyanate Displacement on Benzyl Chloride (티오시안산 염에 의한 염화벤질의 치환반응에 미치는 상이동 촉매효과)

  • Seung Hyun Chang;Mu Hong Yoon;Chang Su Kim;Kwang Bo Chung;Jae Hu Shim
    • Journal of the Korean Chemical Society
    • /
    • v.33 no.6
    • /
    • pp.651-656
    • /
    • 1989
  • The catalytic effects of several phase-transfer catalysts (PTC) on the liquid-liquid heterogeneous nucleophilic displacement reaction of thiocyanate on benzyl chloride have been determined. Reactions followed a pseudo-first order dependency on the benzyl chloride concentration and the observed rate constant $(k_{obsd})$ were linearly related to the concentration of catalyst and varied with variables such as reaction temperature and solvent. The sequences of catalytic activity of the displacement were $NH_4Cl$ < BTMAC < 18-crown-6 < BTEAC < PEG < TBAC < CTMAB. Enthalpies and entropies of activation associated with the displacement were 15∼20 Kcal$mo^{l-1}$, -12∼-29 eu. respectively and the reaction occurs in the interphase comprising of microemulsion.

  • PDF