• Title/Summary/Keyword: Displacement feedback

Search Result 156, Processing Time 0.023 seconds

Tactile feedback device using repulsive force of the magnets for teleoperation (자석의 반발력을 이용한 원격조종용 촉각궤환장치)

  • Ahn, Ihn-Seok;Moon, Yong-Mo;Lee, Jung-Hun;Park, Jong-Oh;Lee, Jong-Won;Woo, Kwang-Bang
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.3 no.1
    • /
    • pp.67-76
    • /
    • 1997
  • In this paper we developed a tactile feedback device using repulsive force of magnets. The force of the tactile feedback device was derived from the Maxwell's stress method by using the concept of magnetic charge. Magnetic repulsive force is linear function with respect to current and nonlinear to displacement. Experimental data shows these characteristics. To compensate the fact that the presented tactile feedback device can not be controlled by close loop control, we developed a simulation model which predicts output displacement and force by using Runge-Kutta method. And, this paper evaluated the presented tactile feedback device and compared it with commercial tactile feedback devices.

  • PDF

Synthesis on External Feedback Loop of Oculomotor Control System (안구제어계의 외부귀환 루우프 구성)

  • 박상희;김성환
    • 전기의세계
    • /
    • v.26 no.4
    • /
    • pp.54-60
    • /
    • 1977
  • The feedback sources of oculomotor control system consist of three types of feedback path originating from retinal image displacement, in the proprioceptive fibers of the extraocular muscles, in the efference copy within the C.N.S. From above feedback loops, the retinal image feedback path is a main subject in this experiment. The electrical output of eye ball motion detecting with a photo-electric matrix method is fed into galvanometer through the external feedback path, and the stability was also examined.

  • PDF

Dynamic Behavior Analysis of variable Displacement Control Valve for Closed Circuit Piston Pump (피스톤 펌프 정/역 가변토출 제어밸브의 동적거동 해석)

  • 유진산;함영복;윤소남;김성동
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.721-724
    • /
    • 2002
  • This study deals with a dynamic behavior analysis of pump control regulator varied the swash plate tilting angle with the positive and negative direction. To accomplish it's purpose, modeling and displacement response analysis about principal parts (spool, servo piston, feedback lever, sleeve) of pump control regulator was performed. We have been able to verifying the propriety of servo mechanism and design parameters of pump control regulator by research results. So, it respect to utilized with useful research data at variable displacement control valve development of variable displacement piston pump.

  • PDF

A study of Energy Saving Hydraulic Cylinder System Using Hydraulic Transformer (유압 트랜스포머를 이용한 유압 실린더의 에너지 절감에 관한 연구)

  • Ahn, Kyoung-Kwan;Lee, Min-Su;Cho, Yong-Rae;Yoon, Ju-Hyeon;Jo, Woo-Keun;Yoon, Hong-Soo
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1075-1080
    • /
    • 2007
  • In order to reduce energy consumption, secondary controlled system has been applied to many types of equipments. In lifting equipments or press machines using hydraulic cylinder, a hydraulic transformer is used as a control component instead of a valve for motion control and a component for recovering potential energy of load. The transformer is a combination of a variable displacement pump/motor as a secondary controlled element and a fixed displacement pump/motor. In this paper the effect of transformer is studied. Multiple closed loop controllers with displacement feedback of variable pump/motor, speed feedback and position feedback of cylinder are used. The efficiency and energy consumption when cylinder is driven up and down is calculated by simulation. Simulation results show that considerable energy saving is achieved by choosing load ratio, circuit type and supply pressure.

  • PDF

Active Vibration Control of Multi-Mode Forced Vibration Using PPF Control Technique (PPF 제어기법을 이용한 다중 모드 강제 진동의 능동 진동 제어)

  • 한상보;곽문규;윤신일
    • Journal of KSNVE
    • /
    • v.7 no.6
    • /
    • pp.1007-1013
    • /
    • 1997
  • This paper presents active vibration control scheme of multi-mode forced vibration using piezocetamic sensors and actuators. The control scheme adopted is the Positive Position Feedback (PPF) control. Among various vibration control techniques. PPF control technique makes use of generalized displacement measurements to accomplish the vibration suppression. Two independent controllers are implemented to control the first and the second modes of the beam under external excitation. Experimental results for various damping ratios and feedback gains of the PPF controllers are compared with respect to the contorl efficiency. The results indicate that steady state vibration under wide band excitation can be controlled effectively when multiple sets of PZT sensors and actuators were used with PPF control technique.

  • PDF

Control System Design for the Focus Servo System of DVD Drive (DVD 드라이브의 포커스 서보 시스템 제어기 설계)

  • 한기봉;이시복
    • Journal of KSNVE
    • /
    • v.11 no.1
    • /
    • pp.49-56
    • /
    • 2001
  • In this paper, two plant models, of which one is newly developed and the other one is the conventional one, of the focus servo system of DVD drive are presented and a two-degree-of freedom controller consisted of Inverse dynamics feedforward and LQG/LTR feedback controller is designed. The newly developed plant model is used to design the feedforward controller and the conventional model is used for the design of feedback controller. The output of newly developed model is the displacement of objective lens and the output of conventional model is the focus error of the DVD focus servo system. The displacement of the objective lens is estimated by the dynamics model of the DVD focus servo system. The disturbance rejection performance of the two-degree-of freedom controller is compared with that of an LQG/LTR one.

  • PDF

Thermally-Induced Vibration Control of Rotating Composite Thin-Walled Blade (회전하는 복합재 블레이드의 열진동 해석 및 제어)

  • Jung, Hoe-Do;Na, Sung-Soo;Kwak, Mun-Kyu;Heo, Seok
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1696-1701
    • /
    • 2003
  • This paper deals with a vibration control analysis of a rotating composite blade, modeled as a tapered thinwalled beam induced by heat flux. The displayed results reveal that the thermally induced vibration yields a detrimental repercussions upon their dynamic responses. The blade consists of host graphite epoxy laminate with surface and spanwise distributed transversely isotropic (PZT-4) sensors and actuators. The controller is implemented via the negative velocity and displacement feedback control methodology, which prove to overcome the deleterious effect associated with the thermally induced vibration. The structure is modeled as a composite thin-walled beam incorporating a number of nonclassical features such as transverse shear, secondary warping, anisotropy of constituent materials, and rotary inertias.

  • PDF

Development of Piezo-Eloectric Micro-Depth Control System (압전소자에 의한 미세이송시스템의 개발에 관한 연구)

  • 김동식
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1995.03a
    • /
    • pp.40-62
    • /
    • 1995
  • A micro positioning system using piezoelectric actuators have very wide application region such as ultra-precision machine tool optical device measurement system. In order to keep a high precision displacement resolution it to useful to take a position sensor and feedback of the error. From the practical point of view high-resolution displacement sensor systems are very expensive and it is difficult to make such a sensitive sensor work properly in a poor operational environment of industry. In this study a piezo-electric micro-depth control system which does not require position sensor but piezoelectric voltage feedback has been developed. It is driven by hysteresis-considering reference input voltage calculated in advance and actuator/sensor characteristics of piezoelectric materials. From the result of experiments a fast and stable response of micro-depth control system has been achieved and an efficient technique to control the piezoelectric actuator suggested.

  • PDF

A Study on the Static Levitation Control of Magnetic Bearing using Optical Fiber Displacement Sensors (광파이버 변위 센서를 적용한 자기베어링 정적 부상 제어 연구)

  • 강종규;신우철;홍준희
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.131-136
    • /
    • 2003
  • Five expensive sensors are necessary to control a magnetic bearing system. The sensor price rate of magnetic bearing system is high. So it is necessary that cheap and good sensor is developed. The optical fiber displacement sensor is adaptive to satisfy this condition. We can design magnetically suspended spindle based on static characteristic of optical fiber displacement sensor developed. The controller can be designed by decoupled feedback PD. Therefore, it is simpler than any other controller comparatively.

  • PDF

Effect of feedback on PID controlled active structures under earthquake excitations

  • Nigdeli, Sinan Melih
    • Earthquakes and Structures
    • /
    • v.6 no.2
    • /
    • pp.217-235
    • /
    • 2014
  • In this paper, different feedback control strategies are presented for active seismic control using proportional-integral-derivative (PID) type controllers. The parameters of PID controller are found by using an numerical algorithm considering time delay, maximum allowed control force and time domain analyses of shear buildings under different earthquake excitations. The numerical algorithm scans combinations of different controller parameters such as proportional gain ($K_p$), integral time ($T_i$) and derivative time ($T_d$) in order to minimize a defined response of the structure. The controllers for displacement, velocity and acceleration feedback control strategies are tuned for structures with active control at the first story and all stories. The performance and robustness of different feedback controls on time and frequency responses of structures are evaluated. All feedback controls are generally robust for the changing properties of the structure, but acceleration feedback control is the best one for efficiency and stability of control system.