• 제목/요약/키워드: Displacement distribution

검색결과 1,059건 처리시간 0.021초

Stress distribution in a passive fully grouted rock bolts

  • Karanam U. M. Rao;Dasyapu S. K.
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 한국지구물리탐사학회 2003년도 Proceedings of the international symposium on the fusion technology
    • /
    • pp.122-128
    • /
    • 2003
  • Rock bolts are widely used as a supplementary roof support system in hard-rock mining since a long time. Since the performance of fully grouted passive bolts depends on bond strength, in the present investigation extensive laboratory pull-out as well as push-out tests were conducted varying the bolt diameter, length and cement-water mixing ratios of grout. The load-displacement curves were developed and were verified with the numerical results obtained from finite element analysis using ALGOR software. Numerical models were validated for push-out tests and a detailed analysis was carried out to know the displacement, stress, strain distribution along the bolt.

  • PDF

오일미스트윤활 고속주축의 예압과 냉각에 따른 열특성의 실험적 고찰 (Experimental study on the thermal characteristics according to the preload and cooling for the high speed spindle with oil mist lubrication)

  • 김수태;최대봉;정성훈;김용기
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2004년도 추계학술대회 논문집
    • /
    • pp.428-432
    • /
    • 2004
  • The important problem in the high speed spindles is to reduce and minimize the thermal effect by the motor and ball bearings. Thermal characteristics according to the bearing preload and hollow shaft cooling are studied for the test spindle with the oil mist lubrication and high frequency motor. Bearings and motor e main heat generation, and heat generation by ball bearings as a function of load, viscosity and gyroscopic moment effect are considered. Temperature distribution and thermal displacement according to the speed of spindle are measured by thermocouple and gap sensor. The results show that the fitting preload and hollow haft cooling are very effective to minimize the thermal effect by the motor and ball bearings.

  • PDF

자동 지그 바이스용 조오-웨지의 클램핑 특성 연구 (A Study on Clamping Characteristics of Jaw-wedge for Automatic Jig Vise)

  • 정시교;맹희영
    • 한국생산제조학회지
    • /
    • 제20권6호
    • /
    • pp.745-750
    • /
    • 2011
  • A jig vise is a device to clamp workpiece precisely, which is widely used for various machine tools and manufacturing purpose. A new elastic structured jaw-wedge of jig vise is developed, in this paper, so as to satisfy the clamping requirement and the suppression effect of upright movement of workpiece. The advanced design parameters of jaw-wedge are derived step by step considering the stress distribution and the displacement profiles of ANSYS analysis, and it could find the optimum model which shows the uniform displacement profiles and exhibits the non-concentrated stress distribution of jaw neck. As a result, it is ascertained that an jaw-wedge developed in this study is the simple elastic structure which is effective for automatic multiple clamping purpose without the danger of shear crack or bucking of jaw.

Thermal buckling of functionally graded plates using a n-order four variable refined theory

  • Abdelhak, Z.;Hadji, L.;Daouadji, T.H.;Bedia, E.A.
    • Advances in materials Research
    • /
    • 제4권1호
    • /
    • pp.31-44
    • /
    • 2015
  • This paper presents a simple n-order four variable refined theory for buckling analysis of functionally graded plates. By dividing the transverse displacement into bending and shear parts, the number of unknowns and governing equations of the present theory is reduced, and hence, makes it simple to use. The present theory is variationally consistent, uses the n-order polynomial term to represent the displacement field, does not require shear correction factor, and eliminates the shear stresses at the top and bottom surfaces. A power law distribution is used to describe the variation of volume fraction of material compositions. Equilibrium and stability equations are derived based on the present n-order refined theory. The non-linear governing equations are solved for plates subjected to simply supported boundary conditions. The thermal loads are assumed to be uniform, linear and non-linear distribution through-the-thickness. The effects of aspect and thickness ratios, gradient index, on the critical buckling are all discussed.

船體斷面形狀(船體斷面形狀)과 조파저항(造波抵抗)과의 관계(關係) (The Relation between the Sectional Form of the Shio and the Wave Resistance)

  • 정정환;
    • 대한조선학회지
    • /
    • 제12권1호
    • /
    • pp.41-46
    • /
    • 1975
  • This paper was intended to compare the relationship between sectional form of ships and wave making resistance by calculating the resistance value practically rather than theoretically. As the sectional form of ships, four types of quadratic ship forms was introduced and he wave making resistance was calculated by the Slender Ship Theory. The main result obtained in this paper is the following. The relationship between the displacement distribution of draught direction in the given sectional form of ships and the resistance value was shown. It was supposed that the resistance value will decrease with the increase of the displacement distribution of draught direction and it was proved by the numerical value.

  • PDF

Stoneley wave propagation in nonlocal isotropic magneto-thermoelastic solid with multi-dual-phase lag heat transfer

  • Lata, Parveen;Singh, Sukhveer
    • Steel and Composite Structures
    • /
    • 제38권2호
    • /
    • pp.141-150
    • /
    • 2021
  • In the present paper we have investigated the Stoneley wave propagation at the interface of two dissimilar homogeneous nonlocal magneto-thermoelastic media under the effect of hall current applied to multi-dual-phase lag heat transfer. The secular equations of Stoneley waves have been derived by using appropriate boundary conditions. The wave characteristics such as attenuation coefficients, temperature distribution and phase velocity are computed and have been depicted graphically. Effect of nonlocal parameter and hall effect are studied on the attenuation coefficient, phase velocity, temperature distribution change, stress component and displacement component. Also, some particular cases have been discussed from the present study.

Full-scale tests and analytical model of the Teflon-based lead rubber isolation bearings

  • Wang, Lu;Oua, Jin;Liu, Weiqing;Wang, Shuguang
    • Structural Engineering and Mechanics
    • /
    • 제48권6호
    • /
    • pp.809-822
    • /
    • 2013
  • Base isolation is widely used in seismic resisting buildings due to its low construction cost, high reliability, mature theory and convenient usage. However, it is difficult to design the isolation layer in high-rise buildings using the available bearings because high-rise buildings are characterized with long period, low horizontal stiffness, and complex re-distribution of the internal forces under earthquake loads etc. In this paper, a simple and innovative isolation bearing, named Teflon-based lead rubber isolation bearing, is developed to address the mentioned problems. The Teflon-based lead rubber isolation bearing consists of friction material and lead rubber isolation bearing. Hence, it integrates advantages of friction bearings and lead rubber isolation bearings so that improves the stability of base isolation system. An experimental study was conducted to validate the effectiveness of this new bearing. The effects of vertical loading, displacement amplitude and loading frequency on the force-displacement relationship and energy dissipation capacity of the Teflon-based lead rubber isolation bearing were studied. An analytical model was also proposed to predict the force-displacement relationship of the new bearing. Comparison of analytical and experimental results showed that the analytical model can accurately predict the force-displacement relationship and elastic shear deflection of the Teflon-based lead rubber isolation bearings.

Magneto-thermo-elastic response of a rotating functionally graded cylinder

  • Hosseini, Mohammad;Dini, Ali
    • Structural Engineering and Mechanics
    • /
    • 제56권1호
    • /
    • pp.137-156
    • /
    • 2015
  • In this paper, an analytical solution of displacement, strain and stress field for rotating thick-walled cylinder made of functionally graded material subjected to the uniform external magnetic field and thermal field in plane strain state has been studied. Stress, strain and displacement field as a function of radial coordinates considering magneto-thermo-elasticity are derived analytically. According to the Maxwell electro-dynamic equations, Lorentz force in term of displacement is obtained in cylindrical coordinates. Also, symmetric temperature distribution along the thickness of hollow cylinder is obtained by solving Fourier heat transfer equation in cylindrical coordinates. Using equation of equilibrium and thermo-mechanical constitutive equations associated with Lorentz force, a second-order inhomogeneous differential equation in term of displacement is obtained and will be solved analytically. Except Poisson's ratio, other mechanical properties such as elasticity modulus, density, magnetic permeability coefficient, heat conduction coefficient and thermal expansion coefficient are assumed to vary through the thickness according to a power law. In results analysis, non-homogeneity parameter has been chosen arbitrary and inner and outer surface of cylinder are assumed to be rich metal and rich ceramic, respectively. The effect of rotation, thermal, magnetic field and non-homogeneity parameter of functionally graded material which indicates percentages of cylinder's constituents are studied on displacement, Von Mises equivalent stress and Von Mises equivalent strain fields.

유리단 국소의치의 기능 인상에 의한 연조직의 수직적 변위량에 관한 연구 (STUDY ON VERTICAL DISPLACEMENT OF SOFT TISSUE UNDER DISTAL EXTENSION PARTIAL DENTURE BASE BY FUNCTIONAL IMPRESSION)

  • 이광희;장익태
    • 대한치과보철학회지
    • /
    • 제21권1호
    • /
    • pp.59-66
    • /
    • 1983
  • Distal extension partial dentures are supported by both the relatively rigid teeth and the resilient mucosa. So impression techniques of residual alveolar ridge in case of distal extension partial denture have particular importance in order to broad distribution of the masticatory force. McLean recognized the need for recording the tissues supporting distal extension partial denture base in functional form to equalize the resilient and non-resilient support, and this was called functional impression. Many investigators proposed various techniques of the functional impression for a distal extension partial denture, but only a little studies were performed about displacement of soft tissue under distal extension partial denture base. The purpose of this study is to investigate the amount of vertical displacement of the soft tissue under distal extension partial denture base by different functional impression techniques. Impression techniques used were Z.O.P. Impression, Selective Tissue Placement Impression, Functional Relining Impression. Measurement of the vertical displacement of soft tissue were made with Depth Gauge and Measuring Platform. A Anatomic Impression was used as a control. The results were tested statistically using 3 way ANOVA and Scheffe test. The followings were the results obtained from this study. 1. The greatest amount of soft tissue displacement was observed in the center of the retromolar pad. 2. No significant differences were found between the crest of alveolar ridge and the buccal shelf area. 3. The greatest soft tissue displacement was observed in Functional Relining Impression using Iowa wax, and the least displacement was observed in Selective Tissue Placement Impression using murcaptan rubber base. 4. No significant differences were found between finger pressure and biting pressure in Z.O.P. Impression, but greater displacement was observed by biting pressure than finger pressure in Functional Reling Impression.

  • PDF

회전변위와 천공을 포함한 측두하악관절 내장증 상태와 임상적 특징간의 상호관계 (The relationship between the TMJ internal derangement state including rotational displacement and perforation and the clinical characteristics)

  • 정환석;유동수
    • 치과방사선
    • /
    • 제28권1호
    • /
    • pp.205-213
    • /
    • 1998
  • This study was designed to reveal the correlationship between the internal derangement state of TMJ and clinical characteristics including pain and mandibular dysfunction. One hundred and twenty five subjects with TMJ signs and symptoms were chosen for two years. The level of pain and madibular dysfunction were evaluated by Visual Analog Scale(VAS) and Craniomandibular Index(CMI). The diagnostic categories of TMJ internal derangement were determined by arthrography and they included normal disc position, anterior disc displacement with reduction(ADDR), rotational disc displacement with reduction (RDDR), anterior disc displacement without reduction(ADDNR), and rotational disc displacement without reduction(RDDNR). Also disc perforation was used as a criteria to divide the diagnostic subgroups. The obtained results were as follows; 1. The patient distribution of each group was 5 in normal disc position(4%), 40 in ADDR(32%), 30 in RDDR(24%), 34 in ADDNR(27%), and 16 in RDDNR(13%). 2. Perforation was observed in 8% of ADDR, 10% of RDDR, 32% of ADDNR, and 19% of RDDNR. 3. CMI of non-reduction group was higher than that of reduction or normal group(p<0.05), but V AS showed no significant difference.4. CMI of perforation group was higher than that of non-perforation group in reduction group (p<0.05). 5. There were no significant differences of CMI and VAS between anterior disc displacement group and rotational disc displacement group in both reduction and non-reduction group. 6. CMI of RDDNR group was higher than that of RDDR group(p<0.05). 7. There were no significant difference of CMI and VAS between bilateral involvement group and unilateral involvement group(p<0.05).

  • PDF