• Title/Summary/Keyword: Displacement

Search Result 12,793, Processing Time 0.059 seconds

Development of an Algorithm for Detecting Angular Bisplacement with High Accuracy Based on the Dual-Encoder (이중 증분 엔코더에 기초한 초정밀 회전각도 변위 검출 알고리즘 개발)

  • Lee, Se-Han
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.8
    • /
    • pp.29-36
    • /
    • 2008
  • An optical rotary encoder is easy to implement for automation system applications. In particular, the output of the encoder has a digital form pulse, which is also easy to be connected to a popular digital controller. By using an incremental encoder and a counting device, it is easy to measure angular displacement, as the number of the output pulses is proportional to the rotational displacement. This method can only detect the angular placement once a pulse signal comes out of the encoder. The angular displacement detection period is strongly subject to the change of the angular displacement in case of ultimate low velocity range. They have ultimate long detection period or cannot even detect angular displacement at near zero velocity. This paper proposes an algorithm for detecting angular displacement by using a dual encoder system with two encoders of normal resolution. The angular displacement detecting algorithm is able to keep detection period moderately at near zero velocity and even detect constant angular displacement within nominal period. It is useful for motion control applications in case of changing rotational direction at which there occurs zero velocity. In this paper, various experimental results are shown for the angular displacement detection algorithm.

Deformation Analysis of Excavated Behind Ground by The Artificial Displacement Method (II) - Numerical Analysis and Application - (강제변위법을 이용한 굴착배면지반의 변형해석(II) - 수치해석 및 적용성 -)

  • Yun, Jung-Mann
    • Journal of the Korean Geosynthetics Society
    • /
    • v.7 no.3
    • /
    • pp.31-40
    • /
    • 2008
  • The deformation behavior of the excavated behind ground due to the displacement shape of retention walls is predicted by numerical analysis, which can be performed using the artificial displacement method with elasto-plastic constitutive model. The displacement shape of the behind ground around the retention wall is similar to the displacement shape of the retention wall. However, far from the retention wall, it changes to the displacement shape of cantilever. The deformation (the settlement, the lateral movement) of the excavated behind ground can be decreased by restraining the upper displacement of the retention wall. The displacement shape of the retention wall due to excavation affects on the plastic failure zone and decreasing zone of stability of the excavated behind ground.

  • PDF

Study on Assessment of Displacement by Wave Force for Rubble Mound Breakwater and its Application to Design (파랑하중을 받는 굴착치환 사석경사식 방파제의 침하량 산정과 설계 적용성에 관한 연구)

  • Ahn, Ik-Seong;Park, Sang-Kil
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.20 no.4
    • /
    • pp.413-420
    • /
    • 2008
  • Wave force is an important factor which gives a direct affect to stability of the rubble mound breakwater. Particularly wave force has been considered as the main cause of displacement for replaced rubble mound breakwater which permits a little displacement to some degree. But the effect on displacement by wave force has not been considered and reflected in design. Therefore in this study, we compared numerical analysis displacement with field measured displacement so that the effect of wave force on displacement can be reflected in design. Result of the numerical analysis displacement was well consistent with field measured displacement data.

CHANGE OF JOINT SPACE ACCORDING TO SIDEWAYS DISC DISPLACEMENT OF TMJ (악관절원판의 측방변위에 따른 관절간극의 변화)

  • Kim, Joon-Bae;Lee, Doo-Hee;Kim, Hyung-Soo;Oh, Soon-Ho
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.27 no.4
    • /
    • pp.337-343
    • /
    • 2001
  • Objective. Disc displacement may affect the joint space narrowing between condyle head and glenoid fossa. This study was designed to evaluate the correlation between the joint space change and the directions of disc displacement. Study Design. Two hundreds temporomandibular joints MR images of TMD patients (170 joints) and asymptomatic volunteers (30 joints) were evaluated for this purpose. Anterior disc displacement was divided into 3 stages (normal, little to mild, and moderate to severe displacement) based on sagittal images. And sideways displacement was classified as 3 categories (center, medial and lateral displacement) based on coronal images, then joint spaces were measured at medial, central and lateral parts of condyle head on coronal MR images, respectively. The joint spaces of 7 groups divided according to the severity and the direction of disc displacement were compared. Results. The reduction of the joint space was affected by sideways disc displacement at the opposite side of the condyle head, except the cases accompanied with severe anteriorly and laterally displaced disc. Conclusion. The sideways disc displacement affected on the opposite side temporomandibular joint space width.

  • PDF

Improvement for Response Delays of Displacement Magnifier in Jetting Dispenser (젯팅 디스펜서 변위확대장치의 응답지연 개선 연구)

  • Ha, Myeong-Woo;Lee, Kwang-Hee;Hong, Seung-Min;Lee, Chul-Hee
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.26 no.5
    • /
    • pp.546-551
    • /
    • 2016
  • The objective of this study is to investigate the response delays between piezo-stack actuator and the displacement magnifier of jetting dispenser and to reduce its falling time in terms of displacement optimization. The dispenser is driven by the dual piezo-stack actuators with a hinge lever mechanism to precisely control flow rate of the working fluid (3000 cP). It is commonly found that piezo actuator-driven jetting dispensers involving viscous working fluids have displacement optimization problem for ideal performance. The response delay of the system is caused by the phenomenon that the displacement magnifier cannot exactly follow the motion of the piezo actuators. The response delay may lower the performance of the system due to the inaccurate discharge of working fluid or even damages to the system itself due to inharmonious motion of piezo actuators with lever system. To reduce its response delay, a new displacement profile obtained from displacement optimization is suggested; its performance is tested through finite element analysis; and experiments are carried out to verify the performance of the obtained displacement profile.

Displacement aging component-based stability analysis for the concrete dam

  • Huang, Xiaofei;Zheng, Dongjian;Yang, Meng;Gu, Hao;Su, Huaizhi;Cui, Xinbo;Cao, Wenhan
    • Geomechanics and Engineering
    • /
    • v.14 no.3
    • /
    • pp.241-246
    • /
    • 2018
  • The displacement monitoring data series reconstruction method was developed under equal water level effects based on displacement monitoring data of concrete dams. A dam displacement variation equation was set up under the action of temperature and aging factors by optimized analysis techniques and then the dam displacement hydraulic pressure components can be separated. Through the dynamic adjustment of temperature and aging effect factors, the aging component isolation method of dam displacement was developed. Utilizing the isolated dam displacement aging components, the dam stability model was established. Then, the dam stability criterion was put forward based on convergence and divergence of dam displacement aging components and catastrophe theory. The validity of the proposed method was finally verified combined with the case study.

Estimation of Displacement Responses from the Measured Dynamic Strain Signals Using Mode Decomposition Technique (모드분해기법을 이용한 동적 변형률신호로부터 변위응답추정)

  • Kim, Sung-Wan;Chang, Sung-Jin;Kim, Nam-Sik
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.109-117
    • /
    • 2008
  • In this study, a method predicting the displacement responseof structures from the measured dynamic strain signal is proposed by using a mode decomposition technique. Dynamic loadings including wind and seismic loadings could be exerted to the bridge. In order to examine the bridge stability against these dynamic loadings, the prediction of displacement response is very important to evaluate bridge stability. Because it may be not easy for the displacement response to be acquired directly on site, an indirect method to predict the displacement response is needed. Thus, as an alternative for predicting the displacement response indirectly, the conversion of the measured strain signal into the displacement response is suggested, while the measured strain signal can be obtained using fiber optic Bragg-grating (FBG) sensors. To overcome such a problem, a mode decomposition technique was used in this study. The measured strain signal is decomposed into each modal component by using the empirical mode decomposition(EMD) as one of mode decomposition techniques. Then, the decomposed strain signals on each modal component are transformed into the modal displacement components. And the corresponding mode shapes can be also estimated by using the proper orthogonal decomposition(POD) from the measured strain signal. Thus, total displacement response could be predicted from combining the modal displacement components.

  • PDF

Study on Evaluating Displacement Tolerance of Sky-bridge in Tall Buildings (고층 스카이브리지의 변위 허용치 산정에 대한 연구)

  • Kim, Yun Gon
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.36 no.4
    • /
    • pp.135-142
    • /
    • 2020
  • The new method for evaluating the displacement tolerance of sky-bridges with pin-roller type supports was proposed considering both return period of phase difference between connected buildings and geometrical characteristics of skybridge. Because displacement tolerance is relative value, which is most affected by the phase difference of the connected buildings, the dynamic response of these building with time history analysis should be evaluated. However, the initial phase could not be specified, so the result of displacement tolerance would be varied with respect to initial value. Thus, the tolerance can be reasonably evaluated SRSS calculation with design displacements based on statistical approach and of each building. In addition, the geometrical characteristics of sky-bridge should be considered because the transverse displacement of sky-bridge span causes the shear deformation of the bridge and longitudinal displacement tolerance cannot release the shear deformation. Therefore, the some pin-end support in sky-bridge should have longitudinal displacement tolerance to accommodate the shear deformation. By resolving this shear deformation, it is possible not only to accommodate transverse displacement, but also to avoid the complicated joint details such as both pot bearing and guided supports with shear key.

Displacement Measurement by Multiplexed Optical Loss -based Fiber Optic Sensor (다중화된 광 손실형 광섬유 센서에 의한 변위의 측정)

  • 권일범;김치엽;유정애
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.10a
    • /
    • pp.556-565
    • /
    • 2003
  • Light losses in optical fibers are investigated by a fiber optic OTDR (Optical Time Domain Reflectometry) sensor system to develop fiber optic probes for structural displacement measurement. The displacement sensitivity was determined by the measurements of fiber-bending loss according to the gage length changes of the displacement sensor. The fiber optic displacement probe was manufactured to verify the feasibility of the structural displacement measurement.

  • PDF

Approximate seismic displacement capacity of piles in marine oil terminals

  • Goel, Rakesh K.
    • Earthquakes and Structures
    • /
    • v.1 no.1
    • /
    • pp.129-146
    • /
    • 2010
  • This paper proposes an approximate procedure to estimate seismic displacement capacity - defined as yield displacement times the displacement ductility - of piles in marine oil terminals. It is shown that the displacement ductility of piles is relatively insensitive to most of the pile parameters within ranges typically applicable to most piles in marine oil terminals. Based on parametric studies, lower bound values of the displacement ductility of two types of piles commonly used in marine oil terminals - reinforced-concrete and hollow-steel - with either pin connection or full-moment-connection to the deck for two seismic design levels - Level 1 or Level 2 - and for two locations of the hinging in the pile - near the deck or below the ground - are proposed. The lower bound values of the displacement ductility are determined such that the material strain limits specified in the Marine Oil Terminal Engineering and Maintenance Standard (MOTEMS) are satisfied at each design level. The simplified procedure presented in this paper is intended to be used for preliminary design of piles or as a check on the results from the detailed nonlinear static pushover analysis procedure, with material strain control, specified in the MOTEMS.