• Title/Summary/Keyword: Dispersoid

Search Result 20, Processing Time 0.025 seconds

The Microstructure and Coarsening Behavior of Cr2O3 Dispersoid in ODS Cu Produced by Reactive Milling (반응성 밀링에 의해 제조된 Cr2O3 분산강화형 Cu 합금의 미세조직과 입자조대화)

  • Park, Eun-Bum;Hwang, Seung-Joon
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.31 no.4
    • /
    • pp.171-179
    • /
    • 2018
  • Copper powder dispersed with 4 vol.% of $Cr_2O_3$ was successfully produced by a simple milling at 210 K with a mixture of $Cu_2O$, Cu and Cr elemental powders, followed by Hot Pressing (HP) at 1123 K and 50 MPa for 2h to consolidate the milled powder. The microstructure of the HPed material was characterized by standard metallographic techniques such as XRD (X-ray Diffraction), TEM and STEM-EDS. The results of STEMEDS analysis showed that the HPed materials comprised a mixture of nanocrystalline Cu matrix and $Cr_2O_3$ dispersoid with a homogeneous bimodal size distribution. The mechanical properties of the HPed materials were characterized by micro Vickers hardness test at room temperature. The thermodynamic considerations on the heat of formation, the incubation time to ignite MSR (Mechanically induced Self-sustaining Reaction), and the adiabatic temperature for the heat of displacement reaction between the oxide-metal are made for the delayed formation of $Cr_2O_3$ dispersoid in terms of MSR suppression. The results of TEM observation and hardness test indicated that the relatively large dispersoids in the HPed materials are attributed to the significant coarsening for the high temperature consolidation; this leads to the low Vickers hardness value. Based on the thermodynamic calculation for the operating processes with a limited number of parameters, the formation kinetics and coarsening of the $Cr_2O_3$ dispersoid are discussed.

Coarsening of Dispersoid and Matrix Phase in Mechanically Alloyed ODS NiAl (기계적 합금화된 ODS NiAl에서 분산상 및 기지상의 조대화 거동)

  • 어순철
    • Journal of Powder Materials
    • /
    • v.4 no.1
    • /
    • pp.48-54
    • /
    • 1997
  • NiAl powders containing oxide dispersoids have been produced by mechanical alloying process in a controlled atmosphere using high energy attrition mill. The powders have been consolidated by hot extrusion and hot pressing followed by isothermal annealing to induce microstructure coarsening to improve high temperature properties. Grain growth and dispersoid coarsening kinetics have been investigated as functions of annealing time and temperature. Coarsening of dispersion strengthen NiAl and dispersoid has been discussed. Some clues of secondary recrystallization have been investigated. Mechanical property measurements have been also made and correlated with the microstructures.

  • PDF

Microstuctures and Themal Stability of Rapidly Solidified Al-Fe-V-Si-(Mn) Alloys (급랭응고한 Al-Fe-V-Si계 합금의 미세조직과 열안정성에 관한 연구)

  • Kim, Seon-Hwa;Park, Won-Wook
    • Applied Microscopy
    • /
    • v.21 no.2
    • /
    • pp.57-66
    • /
    • 1991
  • The main purpose of this paper was to investigate the change of rapidly solidified microstructures and dispersoid behavior according to heat-treatment in the Al-Fe-V-Si-(Mn) alloys. It was found that (111) preferred orientation identified by X-ray diffraction and fine subgrain/large grain were observed in the rapidly solidified Al-Fe-V-Si-(Mn) alloys. Cell boundary of the zone A was composed of the microcrystalline, whereas that of the zone B was amorphous. Decomposition of the Al-Fe-V-Si-(Mn) alloys occurred at about $300^{\circ}C$. These alloys exhibited excellent thermal stability at the elevated temperature. Microstructure of the zone B was more stable than that of the zone A. The spherical dispersoid and 5-fold symmetry phase was also more thermally stable than the amorphous structure of cell boundary.

  • PDF

On The Creep Threshold Stress in Secondary Recrystallized ODS MA NiAl (이차 재결정화된 기계적 합금화 ODS NiAl의 creep threshold stress에 관한 고찰)

  • 어순철
    • Journal of Powder Materials
    • /
    • v.5 no.2
    • /
    • pp.122-128
    • /
    • 1998
  • NiAl based ODS (Oxide Dispersion Strengthened) intermetallic alloys have been produced by mechanical alloying (MA) process and consolidated by hot extrusion. Subsequent thermomechanical treatments have been applied to induce secondary recrystallization in an attempt to improve creep resistance in this material. The creep behavior of secondary recrystallized MA NiAl has been investigated and compared with those of as-extruded condition. Minimum creep rate were shown to be approximately two orders of magnitude lower than that in as-extruded condition. The improvement in creep resistance is believed due to the grain coarsening, restricting of dispersoid coarsening as well as increase in grain aspect ratio. Creep threshold stress behavior, below which no measurable creep rate can be detected, has been discussed on the basis of particle-dislocation interaction theory. The threshold stress becomes negligible after secondary recrystallization in MA NiAl, presumably due to dispersoid coarsening and a decrease in grain boundary area during secondary recrystallization.

  • PDF

Chemical Homogeneity and Dispersoid Formation in Mechanically Alloyed Al-Ti Composite Metal Powders (기계적 합금화한 Al-Ti 복합금속분말의 화학적 균질성과 분산상 형성)

  • Lee, Kwang-Min;Moon, In-Hyung
    • Analytical Science and Technology
    • /
    • v.5 no.1
    • /
    • pp.103-110
    • /
    • 1992
  • Chemical homogeneity and dispersoid formation in mechanically alloyed Al-Ti composite metal powders were investigated in order to fabricate the high temperature Al-Ti alloys. The homogeneity of composite particles was able to be obtained by MA milling time more than 10 hours with the milling velocity of 400 rpm. The amounts of titanium, carbon and oxygen elements in MA Al-Ti alloys by chemical analysis were 8.2, 1.135 and 0.233 wt.%, respectively. The amount of carbon analyzed corresponds to 90 pet. of carbon contained the PCA of stearic acid. TEM analysis has revealed the presence of the rounded $Al_3Ti$ dispersoids with the size of 250nm and the $Al_4C_3$ dispersoids of cylindrical shape with a size of 50nm in thickness and 150nm in length. Also, the some rounded $Al_2O_3$ dispersoids with a size of about 20nm were found in grain boundaries as well as in matrix.

  • PDF

Nanodispersion-Strengthened Metallic Materials

  • Weissgaerber, Thomas;Sauer, Christa;Kieback, Bernd
    • Journal of Powder Materials
    • /
    • v.9 no.6
    • /
    • pp.441-448
    • /
    • 2002
  • Dispersions of non-soluble ceramic particles in a metallic matrix can enhance the strength and heat resistance of materials. With the advent of mechanical alloying it became possible to put the theoretical concept into practice by incorporating very fine particles in a flirty uniform distribution into often oxidation- and corrosion- resistant metal matrices. e.g. superalloys. The present paper will give an overview about the mechanical alloying technique as a dry, high energy ball milling process for producing composite metal powders with a fine controlled microstructure. The common way is milling of a mixture of metallic and nonmetallic powders (e.g. oxides. carbides, nitrides, borides) in a high energy ball mill. The heavy mechanical deformation during milling causes also fracture of the ceramic particles to be distributed homogeneously by further milling. The mechanisms of the process are described. To obtain a homogeneous distribution of nano-sized dispersoids in a more ductile matrix (e.g. aluminium-or copper based alloys) a reaction milling is suitable. Dispersoid can be formed in a solid state reaction by introducing materials that react with the matrix either during milling or during a subsequent heat treatment. The pre-conditions for obtaining high quality materials, which require a homogeneous distribution of small dis-persoids, are: milling behaviour of the ductile phase (Al, Cu) will be improved by the additives (e.g. graphite), homogeneous introduction of the additives into the granules is possible and the additive reacts with the matrix or an alloying element to form hard particles that are inert with respect to the matrix also at elevated temperatures. The mechanism of the in-situ formation of dispersoids is described using copper-based alloys as an example. A comparison between the in-situ formation of dispersoids (TiC) in the copper matrix and the milling of Cu-TiC mixtures is given with respect to the microstructure and properties, obtained.

The Effect of Alloying Elements on the Tensile Property of Al-Mg-Si Alloy (Al-Mg-Si계 합금의 인장 특성에 미치는 합금 원소의 영향)

  • Park J. H.;Kwon Y.-N.;Lee Y. S.;Kang S. W.;Lee B. G.;Lee J. B.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.10a
    • /
    • pp.234-237
    • /
    • 2004
  • As an automotive industry's demand for lighter materials gets bigger and bigger, a lot of new strength Al alloys have been developed recently. In the present study, Al 6xxx series alloys were designed to get the strength level of 350MPa with the elongation of $12\%$. For that purpose, three alloy systems were selected based on the thermodynamics calculation. The effect of both $Mg_{2}Si$ precipitate and excess Si amount on the newly designed alloys was investigated. Also, heat treatment procedure was studied to optimize the mechanical properties.

  • PDF

Ultra-fine Grained and Dispersion-strengthened Titanium Materials Manufactured by Spark Plasma Sintering

  • Handtrack, Dirk;Sauer, Christa;Kieback, Bernd
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.725-726
    • /
    • 2006
  • Ultra-fine grained and dispersion-strengthened titanium materials (Ti-Si, Ti-C, Ti-Si-C) have been produced by high energy ball milling and spark plasma sintering (SPS). Silicon or/and carbon were milled together with the titanium powder to form nanometer-sized and homogeneously distributed titanium silicides or/and carbides as dispersoids, that should prevent grain coarsening during the SPS compaction and contribute to strengthening of the material. The microstructures and the mechanical properties showed that strength, hardness and wear resistance of the sintered materials have been significantly improved by the mechanisms of grain refinement and dispersion strengthening. The use of an organic fluid as carrier of the dispersoid forming elements caused a significant increase in ductility.

  • PDF

The Effect of $Y_2O_3$ Dispersoids on the High Temperature Oxidation of Ti-34wt%Al-1.5wt%Mn Alloys (Ti-34wt%Al-1.5wt%Mn 합금의 고온산화에 미치는 $Y_2O_3$ 분산입자 첨가효과)

  • Lee, Dong-Bok
    • Journal of the Korean institute of surface engineering
    • /
    • v.39 no.6
    • /
    • pp.288-294
    • /
    • 2006
  • Alloys of TiAl-Mn-(0, 5, 10)wt.% $Y_2O_3$ were prepared by a powder metallurgical route, and their oxidation behavior was studied at 800, 900 and $1000^{\circ}C$ in 1 atm of air. The scale formed on the alloys consisted of $TiO_2$ and $Al_2O_3$ oxides. During oxidation, Mn tended to diffuse outward, whereas oxygen diffused inward. The dispersoids of $T_2O_3$, which segregated at the matrix grain boundaries, acted as a diffusion channel for cations and oxygen ions, nucleation sites for oxides, and vacancy annihilation sites. $T_2O_3$ increased the scale thickness, but improved the scale adherence.