• Title/Summary/Keyword: Dispersive material

Search Result 339, Processing Time 0.037 seconds

A Simple and Quick Chemical Synthesis of Nanostructured Bi2Te3, Sb2Te3, and BixSb2-xTe3

  • Kim, Hee-Jin;Lee, Ki-Jung;Kim, Sung-Jin;Han, Mi-Kyung
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.5
    • /
    • pp.1123-1127
    • /
    • 2010
  • We report a simple and quick route for the preparation of high-quality, nearly monodisperse $Bi_2Te_3$, $Sb_2Te_3$, and $Bi_xSb_{2-x}-Te_3$ nanocrystallites. The reactions of bismuth acetate or antimony acetate with Te in oleic acid result in pure phase of $Bi_2Te_3$ or $Sb_2Te_3$ nanoparticles, respectively. Also, ternary $Bi_xSb_{2-x}Te_3$ nanoparticles were successfully synthesized using the same method. The size and morphology of the nanoparticles were controlled by varying the stabilizing agents. The as-prepared nanoparticles are characterized by X-ray diffraction, scanning electron microscope, and high-resolution transmission electron microscope using an energy dispersive spectroscopy.

Impact Localization of a Composite Plate Using a Single Transducer and Spatial Focusing Signal Processing Techniques (단일 센서와 공간집속 신호처리 기술을 이용한 복합재 판에서의 충격위치 결정)

  • Cho, Sungjong;Jeong, Hyunjo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.2
    • /
    • pp.152-159
    • /
    • 2013
  • A structural health monitoring(SHM) technique for locating impact position in a composite plate is presented in this paper. The technique employs a single sensor and spatial focusing properties of time reversal(TR) and inverse filtering(IF). We first examine the focusing effect of back-propagated signal at the impact position and its surroundings through simulation. Impact experiments are then carried out and the localization images are found using the TR and IF signal processing, respectively. Both techniques provide accurate impact location results. Compared to existing techniques for locating impact or acoustic emission source, the proposed methods have the benefits of using a single sensor and not requiring knowledge of material properties and geometry of structures. Furthermore, it does not depend on a particular mode of dispersive Lamb waves that is frequently used in the SHM of plate-like structures.

Assessment of Acupuncture Needle Safety and Stability on Applying Electroacupuncture (전기자극의 시술에 따른 일회용 호침의 안전성 및 안정성 연구)

  • Park, Kyung-Moo;Song, Yun-Kyung;Lim, Hyung-Ho
    • Journal of Korean Medicine Rehabilitation
    • /
    • v.19 no.1
    • /
    • pp.187-199
    • /
    • 2009
  • Objectives : The electroacupuncture was generally has been used in oriental medicine doctors. In recent years, there have been a few studies about safety and stability of acupuncture needle in itself, but then again research of acupuncture needle safety and stability on applying electroacupuncture have been insignificant. Therefore we investigated the safety and change in mechanical characteristic of acupuncture needle in electroacupuncture therapy. Methods : We observed mechanical characteristic change by SEM(Scanning Electron Microscope) and EDX(Energy Dispersive X-ray Spectroscopy), evaluated the hardness by vickers hardness tester. We used MTT assay and cell stain to study about biocompatibility of electroacupuncture. Results : In this study, any corrosion of material, alternation of elements, and change of hardness were not observed in surface analysis using SEM and EDX. In cytotoxity evaluation using MTT assay and cell stain, cell survival rate was low when practicing the electroacupuncture for more than 3 hours. Conclusions : Change of mechanical property was not observed based on the test results using surface analysis and hardness estimation by the electroacupuncture. And considering the biocompatibility, electroacupuncture was thought to be safe in an hour based on cytotoxity evaluation using MTT assay and cell stain.

Enhanced Electrochemical Properties of Surface Modified LiMn2O4 by Li-Fe Composites for Rechargeable Lithium Ion Batteries

  • Shi, Jin-Yi;Yi, Cheol-Woo;Liang, Lianhua;Kim, Keon
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.2
    • /
    • pp.309-314
    • /
    • 2010
  • The surface modified $LiMn_2O_4$ materials with Li-Fe composites were prepared by a sol-gel method to improve the electrochemical performance of $LiMn_2O_4$ and were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy-energy dispersive spectroscopy (SEM-EDS), and transmission electron microscopy (TEM)-EDS. XRD results indicate that all the samples (modified and pristine samples) have cubic spinel structures, and XRD, XPS, and TEM-EDS data reveal the formation of $Li(Li_xFe_xMn_{2-2x})O_4$ solid solution on the surface of particles. For the electrochemical properties, the modified material demonstrated dramatically enhanced reversibility and stability even at elevated temperature. These improvements are attributed to the formation of the solid solution, and thus-formed solid solution phase on the surface of $LiMn_2O_4$ particle reduces the dissolution of Mn ion and suppresses the Jahn-Teller effect.

Physicochemical and Electrochemical Characteristics of Carbon Nanomaterials and Carbon Nanomaterial-Silicon Composites

  • Kim, Soo-Jin;Hyun, Yura;Lee, Chang-Seop
    • Journal of the Korean Chemical Society
    • /
    • v.60 no.5
    • /
    • pp.299-309
    • /
    • 2016
  • In this study, the physicochemical and electrochemical properties of carbon nanomaterials and synthesized nano-carbon/Si composites were studied. The nano-carbon/Si composites were ball-milled to a nano size and coated with pyrolytic carbon using Chemical Vapor Deposition (CVD). They were then finely mixed with respective nano-carbon materials. The physicochemical properties of samples were analyzed using Scanning Electron Microscopy (SEM), Energy Dispersive X-ray Spectroscopy (EDS), Raman spectroscopy, X-ray Diffraction (XRD), X-ray Photoelectron Spectroscopy (XPS), and surface area analyzer. The electrochemical characteristics were investigated using the galvanostatic charge-discharge and cyclic voltammetry (CV) measurements. Three-electrode cells were fabricated using the carbon nanomaterials and nano-carbon/Si composites as anode materials and LiPF6 and LiClO4 as electrolytes of Li secondary batteries. Reversibility using LiClO4 as an electrolyte was superior to that of LiPF6 as the electrolyte. The initial discharge capacities of nano-carbon/Si composites were increased compared to the initial discharge capacities of nano-carbon materials.

A Study on the Synthesis of Dielectric Constant Potential for Arbitrary Inverse Scattering Pattern Using an Iterative Sampling Method (반복 샘플링법을 사용한 임의 역산란 패턴을 위한 유전율 포텐셜 합성에 관한 연구)

  • 남준석;박의준
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.40 no.10
    • /
    • pp.150-158
    • /
    • 2003
  • In the beam pattern synthesis problem using line source, the relationship between source distribution function and beam pattern may be represented by Fourier transform pair. In this paper, a general method to synthesize the line source distribution for a desired lobe-like beam pattern is presented by developing the nonlinear inversion method based on an iterative sampling technique. This method can be applied to the synthesis of continuously distributed dielectric constants satisfying the desired inverse scattering coefficient patterns when illuminating by TE-polarized and TM-polarized plane waves to arbitrary dielectric material. Furthermore this method can also be applied to the synthesis of transmission line with arbitrary reflection coefficient patterns. Some bandstop spatial filter and dispersive transmission line filter are illustrated for generality.

Microwave Dielectric Properties of Bi2O3-TiO2 Composite Ceramics

  • Axelsson, Anna-karin;Sebastian, Maladil;McN Alford, Neil
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.4
    • /
    • pp.340-345
    • /
    • 2003
  • B $i_2$ $O_3$-Ti $O_2$ composite dielectric ceramics have been prepared by a conventional solid state ceramic route. The composite ceramics were prepared with starting materials of different origin and the microwave dielectric properties were investigated. The sintered ceramics were characterized by X-ray diffraction, scanning electron microscopy, energy dispersive X-ray microanalysis, Raman and microwave methods. Structural and microstructural analyses identified two separate phases: Ti $O_2$(rutile) and B $i_2$ $Ti_4$0$_{11}$. The separate grains of titania and bismuth titanate were distributed uniformly in the ceramic matrix. The composition 0.88Ti $O_2$-0.12B $i_2$ $Ti_4$ $O_{11}$ was found to have a Q$\times$f of 9300 GHz (measured at a frequency of 3.9 GHz), a temperature coefficient of frequency, $\tau$$_{cf}$ near zero and a high relative permittivity, $\varepsilon$r of 83. The microwave dielectric properties were measured down to 20$^{\circ}$K K. The quality factor increased on cooling the ceramic samples.les.

Improving Electrochemical Properties of LiFePO4 by Doping with Gallium

  • Nguyen, Van Hiep;Park, Ju-Young;Gu, Hal-Bon
    • Transactions on Electrical and Electronic Materials
    • /
    • v.15 no.6
    • /
    • pp.320-323
    • /
    • 2014
  • Ga-doped $LiFePO_4$ cathode materials were synthesized using a hydrothermal method. The microstructural characteristics and electrochemical performances were systematically investigated using field emission scanning electron microscopy, high-resolution X-ray diffraction, energy dispersive X-ray spectroscopy, charge-discharge cycling, cyclic voltammetry, and electrochemical impedance spectroscopy. Among the as-prepared samples, $LiFe_{0.96}Ga_{0.04}PO_4$ demonstrates the best electrochemical properties in terms of discharge capacity, electrochemical reversibility, and cycling performance with an initial discharge capacity of $125mAh\;g^{-1}$ and high lithium ion diffusion coefficient of $1.38{\times}10^{-14}cm^2s^{-1}$ (whereas for $LiFePO_4$, these were $113mAh\;g^{-1}$ and $8.09{\times}10^{-15}cm^2\;s^{-1}$, respectively). The improved electrochemical performance can be attributed to the facilitation of Li+ ion effective diffusion induced by $Ga^{3+}$ substitution.

Effect of dilution on micro hardness of Ni-Cr-B-Si alloy hardfaced on austenitic stainless steel plate for sodium-cooled fast reactor applications

  • Balaguru, S.;Murali, Vela;Chellapandi, P.;Gupta, Manoj
    • Nuclear Engineering and Technology
    • /
    • v.52 no.3
    • /
    • pp.589-596
    • /
    • 2020
  • Many components in the assembly section of Sodium-cooled Fast Reactor are made of good corrosionresistant 316 LN Stainless Steel material. To avoid self-welding of the components with the coolant sodium at elevated temperature, hardfacing is inevitable. Ni-based colmonoy-5 is used for hardfacing due to its lower dose rate by Plasma Transferred Arc process due to its low dilution. Since Ni-Cr-B-Si alloy becomes very fluidic while depositing, the major height of the weld overlay rests inside the groove. Hardfacing is also done over the plain surface where grooving is not possible. Therefore, grooved and ungrooved hardfaced specimens were prepared at different travel speeds. Fe content at every 100 ㎛ of the weld overlay was studied by Energy Dispersive Spectroscopy and also the micro hardness was determined at those locations. A correlation between iron dilution from the base metal and the micro hardness was established. Therefore, if the Fe content of the weld overlay is known, the hardness at that location can be obtained using the correlation and vice-versa. A new correlation between micro hardness and dilution coefficient is obtained at different locations. A comparative study between those specimens is carried out to recommend the optimum travel speed for lower dilution.

Development of Petroleum-Based Carbon Composite Materials Containing Graphite/silicon Particles and Their Application to Lithium Ion Battery Anodes

  • Noh, Soon-Young;Kim, Young-Hoon;Lee, Chul-Wee;Yoon, Song-Hun
    • Journal of Electrochemical Science and Technology
    • /
    • v.2 no.2
    • /
    • pp.116-123
    • /
    • 2011
  • Herein, a novel preparation method of highly homogeneous carbon-silicon composite materials was presented. In contrast to conventional solvent evaporation method, a milled silicon-graphite or its oxidized material were directly reacted with petroleum-derived pitch precursor. After thermal reaction under high pressure, pitch-graphite-silicon composite was prepared. Carbon-graphite-silicon composite were prepared by an air-oxidization and following carbonization. From energy dispersive spectroscopy, it was observed that small Si particles were highly embedded within carbon, which was confirmed by disappearance of Si peaks in Raman spectra. Furthermore, X-ray diffraction and Raman spectra revealed that carbon crystallinity decreased when the strongly oxidized silicon-graphite was added, which was probably due to oxygen-induced cross-linking. From the anode application in lithium ion batteries, carbon-graphite-silicon composite anode displayed a high capacity ($565\;mAh\;g^{-1}$), a good initial efficiency (68%) and an good cyclability (88% retention at 50 cycles), which were attributed to the high dispersion of Si particles within cabon. In case of the strongly oxidized silicongraphite addtion, a decrease of reversible capacity was observed due to its low crystallinity.