Browse > Article
http://dx.doi.org/10.4313/TEEM.2014.15.6.320

Improving Electrochemical Properties of LiFePO4 by Doping with Gallium  

Nguyen, Van Hiep (Department of Electrical Engineering, Chonnam National University)
Park, Ju-Young (Department of Electrical Engineering, Chonnam National University)
Gu, Hal-Bon (Department of Electrical Engineering, Chonnam National University)
Publication Information
Transactions on Electrical and Electronic Materials / v.15, no.6, 2014 , pp. 320-323 More about this Journal
Abstract
Ga-doped $LiFePO_4$ cathode materials were synthesized using a hydrothermal method. The microstructural characteristics and electrochemical performances were systematically investigated using field emission scanning electron microscopy, high-resolution X-ray diffraction, energy dispersive X-ray spectroscopy, charge-discharge cycling, cyclic voltammetry, and electrochemical impedance spectroscopy. Among the as-prepared samples, $LiFe_{0.96}Ga_{0.04}PO_4$ demonstrates the best electrochemical properties in terms of discharge capacity, electrochemical reversibility, and cycling performance with an initial discharge capacity of $125mAh\;g^{-1}$ and high lithium ion diffusion coefficient of $1.38{\times}10^{-14}cm^2s^{-1}$ (whereas for $LiFePO_4$, these were $113mAh\;g^{-1}$ and $8.09{\times}10^{-15}cm^2\;s^{-1}$, respectively). The improved electrochemical performance can be attributed to the facilitation of Li+ ion effective diffusion induced by $Ga^{3+}$ substitution.
Keywords
Ga-doped $LiFePO_4$; Hydrothermal method; $LiFePO_4$; Lithium ion diffusion coefficient;
Citations & Related Records
연도 인용수 순위
  • Reference
1 A. K. Padhi, K. S. Nanjundaswamy, and J. B. Goodenough, J. Electrochem. Soc., 144, 1188 (1997). DOI: 10.1149/1.1837571.   DOI   ScienceOn
2 N. N. Bramnik, K.G. Bramnik, T. Buhrmester, C. Baehtz, H. Ehrenberg, and H. Fuess, J. Solid State Electrochem., 8, 558 (2004). DOI: 10.1007/s10008-004-0497-x.   DOI
3 V. H Nguyen, W. L. Wang, E. M. Jin, and H. B. Gu, J. Alloys Compd., 569, 29 (2013). DOI: 10.1016/j.jallcom.2013.03.139.   DOI
4 S. Y. Chung, J. T. Bloking, and Y. M. Chiang, Nat. Mat., 1, 123 (2002). DOI: 10.1038/nmat732.   DOI   ScienceOn
5 N. J. Yun, H. W. Ha, K. H. Jeong, H. Y. Park, and K. Kim, J. Power Sources, 160, 1361 (2006). [DOI: http://dx.doi.org/10.1016/j.jpowsour.2006.02.097].   DOI   ScienceOn
6 S. Y. Chung and Y. M. Chiang, Electrochem. Solid-State Lett., 6, A278 (2003). DOI: 10.1149/1.1621289.   DOI   ScienceOn
7 S. Q. Shi, L. J. Liu, C. Y. Ouyang, D. S. Wang, Z. X. Wang, L. Q. Chen, and X. J. Huang, Phys. Rev., B, 68, 195108 (2003). [DOI: http://dx.doi.org/10.1103/PhysRevB.68.195108].   DOI
8 E. M. Jin, B. Jin, D. K. Jun, K. H. Park, H. B. Gu, and K. W. Kim, Power Sources, 178, 801 (2008). [DOI: http://dx.doi.org/10.1016/j.jpowsour.2007.09.073].   DOI
9 D. W. Choi and P. N. Kumta, J. Power Sources, 163, 1064 (2007). [DOI: http://dx.doi.org/10.1016/j.jpowsour.2006.09.082].   DOI   ScienceOn
10 Y. Lin, Y. Lin, B. Zheng, G. Zhao, T. Zhou, M. Chen, X. Mao, H. Lai, and Z. Huang, Int. J. Electrochem. Sci., 6, 6653 (2011).
11 J. F. Ni, H. H. Zhou, J. T. Chen, and X. X. Zhang, Materials Letters, 59, 2361 (2005). [DOI: http://dx.doi.org/10.1016/j.matlet.2005.02.080].   DOI   ScienceOn
12 V. H. Nguyen, E. M. Jin, and H. B. Gu, J. Power Sources, 244, 586 (2013). [DOI: http://dx.doi.org/10.1016/j.jpowsour.2013.01.073].   DOI
13 X. H. Rui, N. Ding, J. Liu, C. Li, and C. H. Chen, J. Electrochem. Acta., 55, 2384 (2010).   DOI   ScienceOn
14 B. Jin, E. M. Jin, K. H. Park, and H. B. Gu, Electrochem. Commun., 10, 1537 (2008). [DOI: http://dx.doi.org/10.1016/j.elecom.2008.08.001].   DOI