• Title/Summary/Keyword: Dispersive kinetic

Search Result 16, Processing Time 0.026 seconds

Equilibrium, kinetic and thermodynamic studies of the adsorption of acidic dye onto bagasse fly ash

  • Shouman, Mona A.;Fathy, Nady A.;El-Khouly, Sahar M.;Attia, Amina A.
    • Carbon letters
    • /
    • v.12 no.3
    • /
    • pp.143-151
    • /
    • 2011
  • Bagasse fly ash (BFA) is one of the important wastes generated in the sugar industry; it has been studied as a prospective low-cost adsorbent in the removal of congo red (CR) from aqueous solutions. Chemical treatment with $H_2O_2$ was applied in order to modify the adsorbability of the raw BFA. Batch studies were performed to evaluate the influence of various experimental parameters such as dye solution pH, contact time, adsorbent dose, and temperature. Both the adsorbents were characterized by Fourier-transform infrared spectrometer, energy-dispersive X-ray spectrophotometer and nitrogen adsorption at 77 K. Equilibrium isotherms for the adsorption of CR were analyzed by Langmuir, Freundlich and Temkin models using non-linear regression technique. Intraparticle diffusion seems to control the CR removal process. The obtained experimental data can be well described by Langmuir and also followed second order kinetic models. The calculated thermodynamic parameters indicate the feasibility of the adsorption process for the studied adsorbents. The results indicate that BFA can be efficiently used for the treatment of waste water containing dyes.

Removal of Phenol from Aqueous Solutions by Activated Red Mud: Equilibrium and Kinetics Studies

  • Shirzad-Siboni, Mehdi;Jafari, Seyed-Javad;Farrokhi, Mehrdad;Yang, Jae Kyu
    • Environmental Engineering Research
    • /
    • v.18 no.4
    • /
    • pp.247-252
    • /
    • 2013
  • In this work, removal of phenol from aqueous solutions by activated red mud was investigated. Scanning electron microscopy and energy dispersive X-ray spectroscopy was used to observe the morphology and surface components of activated red mud, respectively. The effects of various parameters on the removal efficiency were studied, such as contact time, pH, initial phenol concentration, and adsorbent dosage. The removal percentage of phenol was initially increased, as the solution pH increased from 3 to 7, and then decreased above neutral pH. The removal percentage of phenol was decreased by increasing the initial phenol concentrations. Adsorption results show that equilibrium data follow the Freundlich isotherm, and kinetic data was well described by a pseudo-second-order kinetic model. Experimental results show that the activated red mud can be used to treat aqueous solutions containing phenol, as a low cost adsorbent with high efficiency.

Phosphate Removal from Aqueous Solution by Aluminum (Hydr)oxide-coated Sand

  • Han, Yong-Un;Park, Seong-Jik;Park, Jeong-Ann;Choi, Nag-Choul;Kim, Song-Bae
    • Environmental Engineering Research
    • /
    • v.14 no.3
    • /
    • pp.164-169
    • /
    • 2009
  • A powder form of aluminum (hydr)oxides is not suitable in wastewater treatment/filtration systems because of low hydraulic conductivity and large sludge production. In this study, aluminum (hydr)oxide-coated sand (AOCS) was used to remove phosphate from aqueous solution. The properties of AOCS were analyzed using a scanning electron microscopy (SEM) combined with an energy dispersive X-ray spectrometer (EDS) and an X-ray diffractometer (XRD). Kinetic batch, equilibrium batch, and closed-loop column experiments were performed to examine the adsorption of phosphate to AOCS. The XRD pattern indicated that the powder form of aluminum (hydr)oxides coated on AOCS was similar to a low crystalline boehmite. Kinetic batch experiments demonstrated that P adsorption to AOCS reached equilibrium after 24 h of reaction time. The kinetic sorption data were described well by the pseudo second-order kinetic sorption model, which determined the amount of P adsorbed at equilibrium ($q_e$ = 0.118 mg/g) and the pseudo second-order velocity constant (k = 0.0036 g/mg/h) at initial P concentration of 25 mg/L. The equilibrium batch data were fitted well to the Freundlich isotherm model, which quantified the distribution coefficient ($K_F$ = 0.083 L/g), and the Freundlich constant (1/n = 0.339). The closed-loop column experiments showed that the phosphate removal percent decreased from 89.1 to 41.9% with increasing initial pH from 4.82 to 9.53. The adsorption capacity determined from the closed-loop experiment was 0.239 mg/g at initial pH 7.0, which is about two times greater than that ($q_e$ = 0.118 mg/g) from the kinetic batch experiment at the same condition.

Evaluation of Bacterial Transport Models for Saturated Column Experiments

  • Ham, Young-Ju;Kim, Song-Bae;Kim, Min-Kyu;Park, Seong-Jik
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.48 no.7
    • /
    • pp.55-63
    • /
    • 2006
  • Bacterial transport models were evaluated in this study to determine the suitable model at describing bacterial transport in saturated column experiments. Four models used in the evaluation were: advective-dispersive equation (ADE) + equilibrium sorption/retardation (ER) + kinetic reversible sorption (KR) (Model I), ADE + two-site sorption (Model 2), ADE + ER + kinetic irreversible sorption (KI) (Model 3), ADE + KR + KI (Model 4). Firstly, analyses were performed with the first experimental data, showing that Model 4 is appropriate for describing bacterial transport. Even if Model 1 and 2 fit well to the observed data, they have a defect of not including the irreversible sorption, which is directly related to mass loss of bacteria. Model 3 can not properly describe the tailing observed in the data. However, further analysis with the second data indicates that Model 4 can not describe retardation of bacteria, even if the sorption-related parameters are varied. Therefore, Model 4 is modified by incorporating retardation factor into the model, resulting in the improved fitting to the data. It indicates that the transport model, into which retardation, kinetic reversible sorption, and kinetic irreversible sorption are incorporated, is suitable at describing bacterial transport in saturated column experiments. It is expected that the selected transport model could be applied to properly analyze the bacterial transport in saturated porous media.

Nanoporous carbon synthesized from grass for removal and recovery of hexavalent chromium

  • Pathan, Shahin A.;Pandita, Nancy S.
    • Carbon letters
    • /
    • v.20
    • /
    • pp.10-18
    • /
    • 2016
  • Nanoporous carbon structures were synthesized by pyrolysis of grass as carbon precursor. The synthesized carbon has high surface area and pore volume. The carbon products were acid functionalized and characterized by Fourier transform infrared spectroscopy, X-ray diffraction, Brunauer–Emmett–Teller, transmission electron microscopy, and Energy Dispersive X-ray microanalysis. Acid functionalized nanoporous carbon was explored for use in removal of toxic Cr(VI) ions from aqueous media. An adsorption study was done as a function of initial concentration, pH, contact time, temperature, and interfering ions. The experimental equilibrium data fits well to Langmuir isotherm model with maximum monolayer adsorption capacity of 35.335 mg/g. The results indicated that removal obeys a pseudo-second-order kinetic model, and that equilibrium was reached in 10 min. A desorption study was done using NaOH. The results of the present study imply that acid functionalized nanoporous carbon synthesized from grass is an efficient, renewable, cost-effective adsorbent material for removal of hexavalent chromium due to its faster removal rate and reusability.

Representation of Model Uncertainty in the Short-Range Ensemble Prediction for Typhoon Rusa (2002) (단기 앙상블 예보에서 모형의 불확실성 표현: 태풍 루사)

  • Kim, Sena;Lim, Gyu-Ho
    • Atmosphere
    • /
    • v.25 no.1
    • /
    • pp.1-18
    • /
    • 2015
  • The most objective way to overcome the limitation of numerical weather prediction model is to represent the uncertainty of prediction by introducing probabilistic forecast. The uncertainty of the numerical weather prediction system developed due to the parameterization of unresolved scale motions and the energy losses from the sub-scale physical processes. In this study, we focused on the growth of model errors. We performed ensemble forecast to represent model uncertainty. By employing the multi-physics scheme (PHYS) and the stochastic kinetic energy backscatter scheme (SKEBS) in simulating typhoon Rusa (2002), we assessed the performance level of the two schemes. The both schemes produced better results than the control run did in the ensemble mean forecast of the track. The results using PHYS improved by 28% and those based on SKEBS did by 7%. Both of the ensemble mean errors of the both schemes increased rapidly at the forecast time 84 hrs. The both ensemble spreads increased gradually during integration. The results based on SKEBS represented model errors very well during the forecast time of 96 hrs. After the period, it produced an under-dispersive pattern. The simulation based on PHYS overestimated the ensemble mean error during integration and represented the real situation well at the forecast time of 120 hrs. The displacement speed of the typhoon based on PHYS was closest to the best track, especially after landfall. In the sensitivity tests of the model uncertainty of SKEBS, ensemble mean forecast was sensitive to the physics parameterization. By adjusting the forcing parameter of SKEBS, the default experiment improved in the ensemble spread, ensemble mean errors, and moving speed.

Removal of methylene blue using lemon grass ash as an adsorbent

  • Singh, Harminder;Dawa, Tshering B.
    • Carbon letters
    • /
    • v.15 no.2
    • /
    • pp.105-112
    • /
    • 2014
  • Wastewater from textile industries is a major cause of water pollution in most developing countries. In order to address the issues of water pollution and high cost for treatment processes, the use of an inexpensive and environmentally benign adsorbents has been studied. The objective was to find a better alternative to the conventional methods. Lemon grass waste (ash) collected from a lemon grass stream distillation subunit in Bhutan was tested for dye removal from aqueous solutions. The study investigated the removal of methylene blue using the following operational parameters: initial concentration (100-600 mg/L), contact time, adsorbent dose (0.1-0.55 gm/100 mL), and pH (3-10). It was found that the percentage removal of dye increased with a decrease of the initial concentration and increased contact time and dose of adsorbent. The basic pH solution of dye showed better adsorption capacity as compared to the acidic dye solution. Langmuir and Freundlich adsorption isotherms were fitted to the data well. Data fitted better to Lagergren pseudo 2nd order kinetics than a 1st order kinetic model. Surface morphology was also examined via scanning electron microscopy. An elemental analysis was also carried out and the chemical composition and functional groups were analyzed using energy dispersive X-ray spectroscopy and Fourier transform infrared spectroscopy techniques, respectively. The obtained results indicate that lemon grass ash could be employed as a low cost alternative to commercial activated carbon in wastewater treatment for the removal of dyes.

Evaluations of Hydrogen Properties of MgHx-Nb2O5 Oxide Composite by Hydrogen Induced Mechanical Alloying (수소 가압형 기계적 합금화법으로 제조한 MgHx-Nb2O5 산화물 복합 재료의 수소화 특성 평가)

  • Lee, Nari;Lee, Soosun;Hong, Taewhan
    • Journal of Hydrogen and New Energy
    • /
    • v.23 no.5
    • /
    • pp.429-436
    • /
    • 2012
  • Mg and Mg-based alloys are regarded as strong candidate hydrogen storage materials since their hydrogen capacity exceeds that of known metal hydrides. One of the approaches to improve kinetic is addition of metal oxide. In this paper, we tried to improve the hydrogenation properties of Mg-based hydrogen storage composites. The effect of transition metal oxides, such as $Nb_2O_5$ on the kinetics of the Magnesium hydrogen absorption kinetics was investigated. $MgH_x$-5wt.% $Nb_2O_5$ composites have been synthesized by hydrogen induced mechanical alloying. The powder fabricated was characterized by X-ray diffraction (XRD), Field Emission-Scanning Electron Microscopy (Fe-SEM), Energy Dispersive X-ray (EDX), BET and simultaneous Thermo Gravimetric Analysis / Differential Scanning Calorimetry (TG/DSC) analysis. The Absorption / desorption kinetics of $MgH_x$-5wt.% $Nb_2O_5$ (type I and II) are determined at 423, 473, 523, 573 and 623 K.

Breakthrough Curves and Miscible Displacement of Cadmium Through Double-Layered Reclaimed Soils Amended with Macroporous Granule

  • Kim, Hye-Jin;Ryu, Jin-Hee;Kim, Si-Ju;Park, Mi-Suk;Chung, Doug-Young
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.1
    • /
    • pp.15-21
    • /
    • 2011
  • Transport of heavy metals such as Cd is affected by several rate-limiting processes including adsorption and desorption by exchange reactions in soils. In this study, column transport and batch kinetic experiments were performed to assess Cd mobility in a double-layered soil with a reclaimed saline and sodic soil (SSS) as top soil and macroporous granule (MPG) as a bottom layer. For individual soil layer having different physical and chemical properties, Cd was considered to be nonlinear reactivity with the soil matrix in layered soils. The dispersive equation for reactive solutes was solved with three types of boundary conditions for the interface between soil layers. The adsorption of Cd with respect to the saline-sodic sandy loam and the MPG indicated that the nature of the sites or the mechanisms involved in the sorption process of Cd was different and the amounts of Cd for both of samples increases with increasing amounts of equilibrium concentration whereas the amount of Cd adsorbed in saline-sodic sandy loam soil was higher than that in MPG. The results of breakthrough curve indicating relative Cd retardation accompanied by layer material and sequence during leaching showed that the number of pore volumes to reach the maximum relative concentration of 1 increased in the order of MPG, SSS, and double layer of SSS-MPG. Breakthrough curves (BTCs) from column experiments were well predicted with our double-layered model where independently derived solute physical and retention parameters were implemented.