Browse > Article
http://dx.doi.org/10.5714/CL.2011.12.3.143

Equilibrium, kinetic and thermodynamic studies of the adsorption of acidic dye onto bagasse fly ash  

Shouman, Mona A. (Surface Chemistry and Catalysis Laboratory, Physical Chemistry Department, National Research Centre)
Fathy, Nady A. (Surface Chemistry and Catalysis Laboratory, Physical Chemistry Department, National Research Centre)
El-Khouly, Sahar M. (Surface Chemistry and Catalysis Laboratory, Physical Chemistry Department, National Research Centre)
Attia, Amina A. (Surface Chemistry and Catalysis Laboratory, Physical Chemistry Department, National Research Centre)
Publication Information
Carbon letters / v.12, no.3, 2011 , pp. 143-151 More about this Journal
Abstract
Bagasse fly ash (BFA) is one of the important wastes generated in the sugar industry; it has been studied as a prospective low-cost adsorbent in the removal of congo red (CR) from aqueous solutions. Chemical treatment with $H_2O_2$ was applied in order to modify the adsorbability of the raw BFA. Batch studies were performed to evaluate the influence of various experimental parameters such as dye solution pH, contact time, adsorbent dose, and temperature. Both the adsorbents were characterized by Fourier-transform infrared spectrometer, energy-dispersive X-ray spectrophotometer and nitrogen adsorption at 77 K. Equilibrium isotherms for the adsorption of CR were analyzed by Langmuir, Freundlich and Temkin models using non-linear regression technique. Intraparticle diffusion seems to control the CR removal process. The obtained experimental data can be well described by Langmuir and also followed second order kinetic models. The calculated thermodynamic parameters indicate the feasibility of the adsorption process for the studied adsorbents. The results indicate that BFA can be efficiently used for the treatment of waste water containing dyes.
Keywords
bagasse fly ash; congo red removal; equilibrium and kinetic studies;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Mittal AK, Venkobachar C. Studies on sorption of dyes by sulfonated coal and Ganoderma lucidum. Indian J Environ Health, 31, 105 (1989).
2 Gupta VK, Mohan D, Sharma S. Removal of lead from wastewater using bagasse fly ash--a sugar industry waste material. Sep Sci Technol, 33, 1331 (1998).   DOI   ScienceOn
3 Mall ID, Srivastava VC, Agarwal NK, Mishra IM. Adsorptive removal of malachite green dye from aqueous solution by bagasse fly ash and activated carbon-kinetic study and equilibrium isotherm analyses. Colloids Surf Physicochem Eng Aspects, 264, 17 (2005). http://dx.doi.org/10.1016/j.colsurfa.2005.03.027.   DOI   ScienceOn
4 Poots VJP, McKay G, Healy JJ. Removal of basic dye from effluent using wood as an adsorbent. J Water Pollut Control Fed, 50, 926 (1978).
5 Allen SJ, McKay G, Khader KYH. Intraparticle diffusion of a basic dye during adsorption onto sphagnum peat. Environ Pollut, 56, 39 (1989). http://dx.doi.org/10.1016/0269-7491(89)90120-6.   DOI   ScienceOn
6 Choy KKH, McKay G, Porter JF. Sorption of acid dyes from effluents using activated carbon. Resour Conservat Recycl, 27, 57 (1999). http://dx.doi.org/10.1016/s0921-3449(98)00085-8.   DOI   ScienceOn
7 Kim Y, Kim C, Choi I, Rengaraj S, Yi J. Arsenic removal using mesoporous alumina prepared via a templating method. Environ Sci Technol, 38, 924 (2004). http://dx.doi.org/10.1021/es0346431.   DOI   ScienceOn
8 Gokulakrishnan N, Pandurangan A, Sinha PK. Removal of decontaminating agent from aqueous solution using microporous and mesoporous materials: activated carbon as an effective adsorbent. Adsorpt Sci Technol, 26, 291 (2008). http://dx.doi.org/10.1260/026361708786934415.   DOI   ScienceOn
9 Gottipati R, Mishra S. Application of biowaste (waste generated in biodiesel plant) as an adsorbent for the removal of hazardous dye--methylene blue--from aqueous phase. Braz J Chem Eng, 27, 357 (2010). http://dx.doi.org/10.1590/S0104-66322010000200014.   DOI
10 Bhattacharyya KG, Sharma A. Azadirachta indica leaf powder as an effective biosorbent for dyes: a case study with aqueous Congo Red solutions. J Environ Manage, 71, 217 (2004). http://dx.doi.org/10.1016/j.jenvman.2004.03.002.   DOI   ScienceOn
11 Singh BK, Nayak PS. Sorption equilibrium studies of toxic nitro-substituted phenols on fly ash. Adsorpt Sci Technol, 22, 295 (2004). http://dx.doi.org/10.1260/0263617041514901.   DOI   ScienceOn
12 Mall ID, Srivastava VC, Agarwal NK. Removal of Orange-G and Methyl Violet dyes by adsorption onto bagasse fly ash--kinetic study and equilibrium isotherm analyses. Dyes Pigments, 69, 210 (2006). http://dx.doi.org/10.1016/j.dyepig.2005.03.013.   DOI   ScienceOn
13 Banat F, Al-Asheh S, Al-Makhadmeh L. Utilization of raw and activated date pits for the removal of phenol from aqueous solutions. Chem Eng Technol, 27, 80 (2004). http://dx.doi.org/10.1002/ceat.200401868.   DOI   ScienceOn
14 Malik PK. Use of activated carbons prepared from sawdust and rice-husk for adsoprtion of acid dyes: a case study of acid yellow 36. Dyes Pigments, 56, 239 (2003). http://dx.doi.org/10.1016/s0143-7208(02)00159-6.   DOI   ScienceOn
15 Furusawa T, Smith JM. Intraparticle mass transport in slurries by dynamic adsorption studies. AlChE J, 20, 88 (1974). http://dx.doi.org/10.1002/aic.690200111.   DOI   ScienceOn
16 Attia AA, Khedr SA, Elkholy SA. Adsorption of chromium ion (VI) by acid activated carbon. Braz J Chem Eng, 27, 183 (2010). http://dx.doi.org/10.1590/S0104-66322010000100016.   DOI
17 Ho YS, McKay G. Pseudo-second order model for sorption processes. Process Biochem, 34, 451 (1999). http://dx.doi.org/10.1016/s0032-9592(98)00112-5.   DOI   ScienceOn
18 Aksu Z. Biosorption of reactive dyes by dried activated sludge: equilibrium and kinetic modelling. Biochem Eng J, 7, 79 (2001). http://dx.doi.org/10.1016/s1369-703x(00)00098-x.   DOI   ScienceOn
19 Kannan N, Sundaram MM. Kinetics and mechanism of removal of methylene blue by adsorption on various carbons--a comparative study. Dyes Pigments, 51, 25 (2001). http://dx.doi.org/10.1016/s0143-7208(01)00056-0.   DOI   ScienceOn
20 Mane VS, Mall ID, Srivastava VC. Use of bagasse fly ash as an adsorbent for the removal of brilliant green dye from aqueous solution. Dyes Pigments, 73, 269 (2007). http://dx.doi.org/10.1016/j.dyepig.2005.12.006.   DOI   ScienceOn
21 Moreno-Castilla C, Carrasco-Marin F, Parejo-Perez C, Lopez Ramon MV. Dehydration of methanol to dimethyl ether catalyzed by oxidized activated carbons with varying surface acidic character. Carbon, 39, 869 (2001). http://dx.doi.org/10.1016/s0008-6223(00)00192-5.   DOI   ScienceOn
22 Fu Y, Viraraghavan T. Removal of Congo Red from an aqueous solution by fungus Aspergillus niger. Adv Environ Res, 7, 239 (2002). http://dx.doi.org/10.1016/s1093-0191(01)00123-x.   DOI   ScienceOn
23 Rodriguez A, Garcia J, Ovejero G, Mestanza M. Adsorption of anionic and cationic dyes on activated carbon from aqueous solutions: equilibrium and kinetics. J Hazard Mater, 172, 1311 (2009). http://dx.doi.org/10.1016/j.jhazmat.2009.07.138.   DOI   ScienceOn
24 Malik DJ, Strelko Jr V, Streat M, Puziy AM. Characterisation of novel modified active carbons and marine algal biomass for the selective adsorption of lead. Water Res, 36, 1527 (2002). http://dx.doi.org/10.1016/s0043-1354(01)00348-7.   DOI   ScienceOn
25 Finqueneisel G, Zimny T, Albiniak A, Siemieniewska T, Vogt D, Weber JV. Cheap adsorbent. Part 1: Active cokes from lignites and improvement of their adsorptive properties by mild oxidation. Fuel, 77, 549 (1998). http://dx.doi.org/10.1016/S0016-2361(97)00249-4.   DOI   ScienceOn
26 Prasetyoko D, Ramli Z, Endud S, Hamdan H, Sulikowski B. Conversion of rice husk ash to zeolite beta. Waste Manage (Oxford), 26, 1173 (2006). http://dx.doi.org/10.1016/j.wasman.2005.09.009.   DOI   ScienceOn
27 Worathanakul P, Payubnop W, Muangpet A. Characterization for post-treatment effect of bagasse ash for silica extraction. Proc World Acad Sci Eng Tech, 56, 360 (2009).
28 Mall ID, Srivastava VC, Agarwal NK, Mishra IM. Removal of congo red from aqueous solution by bagasse fly ash and activated carbon: kinetic study and equilibrium isotherm analyses. Chemosphere, 61, 492 (2005). http://dx.doi.org/10.1016/j.chemosphere.2005.03.065.   DOI   ScienceOn
29 Capar G, Yetis U, Yilmaz L. The most effective pre-treatment to nanofiltration for the recovery of print dyeing wastewaters. Desalination, 212, 103 (2007). http://dx.doi.org/10.1016/j.desal. 2006.09.020.   DOI   ScienceOn
30 Gad HMH, El-Sayed AA. Activated carbon from agricultural byproducts for the removal of Rhodamine-B from aqueous solution. J Hazard Mater, 168, 1070 (2009). http://dx.doi.org/10.1016/j.jhazmat.2009.02.155.   DOI   ScienceOn
31 Soleimani Dorcheh A, Abbasi MH. Silica aerogel: synthesis, properties and characterization. J Mater Process Technol, 199, 10 (2008). http://dx.doi.org/10.1016/j.jmatprotec.2007.10.060.   DOI   ScienceOn
32 Kuprianov VI, Janvijitsakul K, Permchart W. Co-firing of sugar cane bagasse with rice husk in a conical fluidized-bed combustor. Fuel, 85, 434 (2006). http://dx.doi.org/10.1016/j.fuel.2005.08.013.   DOI   ScienceOn
33 Fotovat F, Kazemian H, Kazemeini M. Synthesis of Na-A and faujasitic zeolites from high silicon fly ash. Mater Res Bull, 44, 913 (2009). http://dx.doi.org/10.1016/j.materresbull.2008.08.008.   DOI   ScienceOn
34 Srivastava VC, Swamy MM, Mall ID, Prasad B, Mishra IM. Adsorptive removal of phenol by bagasse fly ash and activated carbon: equilibrium, kinetics and thermodynamics. Colloids Surf Physicochem Eng Aspects, 272, 89 (2006). http://dx.doi.org/10.1016/j.colsurfa.2005.07.016.   DOI   ScienceOn
35 Gupta VK, Jain CK, Ali I, Sharma M, Saini VK. Removal of cadmium and nickel from wastewater using bagasse fly ash--a sugar industry waste. Water Res, 37, 4038 (2003). http://dx.doi.org/10.1016/s0043-1354(03)00292-6.   DOI   ScienceOn
36 McKay G, Otterburn MS, Aga JA. Fuller's earth and fired clay as adsorbents for dyestuffs. Equilibrium and rate studies. Water Air Soil Pollut, 24, 307 (1985). http://dx.doi.org/10.1007/BF00161790.   DOI
37 Gong R, Li M, Yang C, Sun Y, Chen J. Removal of cationic dyes from aqueous solution by adsorption on peanut hull. J Hazard Mater, 121, 247 (2005). http://dx.doi.org/10.1016/j.jhazmat.2005.01.029.   DOI   ScienceOn
38 Janos P, Buchtova H, Ryznarova M. Sorption of dyes from aqueous solutions onto fly ash. Water Res, 37, 4938 (2003). http://dx.doi.org/10.1016/j.watres.2003.08.011.   DOI   ScienceOn
39 McKay G, Allen SJ, McConvey IF, Otterburn MS. Transport processes in the sorption of colored ions by peat particles. J Colloid Interface Sci, 80, 323 (1981). http://dx.doi.org/10.1016/0021-9797(81)90192-2.   DOI   ScienceOn
40 Seshadri S, Bishop PL, Agha AM. Anaerobic/aerobic treatment of selected Azo dyes in wastewater. Waste Manage (Oxford), 14, 127 (1994). http://dx.doi.org/10.1016/0956-053x(94)90005-1.   DOI   ScienceOn
41 Panswad T, Wongchaisuwan S. Mechanisms of dye wastewater colour removal by magnesium carbonate-hydrated basic. Water Sci Technol, 18, 139 (1986).
42 Malik PK, Saha SK. Oxidation of direct dyes with hydrogen peroxide using ferrous ion as catalyst. Sep Purif Technol, 31, 241 (2003). http://dx.doi.org/10.1016/s1383-5866(02)00200-9.   DOI   ScienceOn
43 Koch M, Yediler A, Lienert D, Insel G, Kettrup A. Ozonation of hydrolyzed azo dye reactive yellow 84 (CI). Chemosphere, 46, 109 (2002). http://dx.doi.org/10.1016/s0045-6535(01)00102-3.   DOI   ScienceOn
44 Ciardelli G, Corsi L, Marcucci M. Membrane separation for wastewater reuse in the textile industry. Resour Conservat Recycl, 31, 189 (2001). http://dx.doi.org/10.1016/s0921-3449(00)00079-3.   DOI   ScienceOn
45 Gregory AR, Elliot J, Kluge P. Ames testing of Direct Black 38 parallels carcinogenicity testing. J Appl Toxicol, 1, 308 (1981). http://dx.doi.org/10.1002/jat.2550010608.   DOI