• Title/Summary/Keyword: Dispersive fiber

Search Result 71, Processing Time 0.024 seconds

Fabrication and characterization of an optical demultiplexer using a concave diffraction grating (Concave 회절격자를 이용한 광분파기 제작과 특성 측정)

  • 강리할
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 1990.02a
    • /
    • pp.227-231
    • /
    • 1990
  • A SiO2/Si concave diffraction grating(period: 1.3${\mu}{\textrm}{m}$) for the angular dispersive element of WDM was fabricated by sandwiching the SiO2/Si plane diffraction grating between a slab waveguide and a cylindrical concave block. Using this concave grating and input/output fiber, and wavelength division demultiplexer was composed. The demultiplexer has five channels, the insertion loss of 30dB, the wavelength spacing per channel of 7nm and crosstalk of-15dB.

  • PDF

A Study on the Characteristic of Weld Joint and Tensile Fracture of SUS304 and Cu High-Speed Dissimilar Lap Welds by Single Mode Fiber Laser (싱글모드 파이버 레이저를 이용한 SUS304와 Cu의 고속 겹치기 용접에서 접합부 및 인장시험 파단부의 특성에 관한 연구)

  • Lee, Su-Jin;Kim, Jong-Do;Katayama, Seiji
    • Journal of Welding and Joining
    • /
    • v.32 no.6
    • /
    • pp.56-63
    • /
    • 2014
  • To develop and understand dissimilar metals joining of Stainless steel and Copper, ultra-high speed laser lap welding was studied using single mode fiber laser in this study. SUS304 and Cu have large differences in materials properties, and Cu and Fe have no intermetallic compounds by typical binary phase of Cu and Fe system. In this study, ultra-high speed lap welds of SUS304 and Cu dissimilar metals using single-mode fiber laser was generated, and weldability of the weld fusion zone was evaluated using a tensile shear test. To understand the phenomenon of tensile shear load, weld fusion zone of interface weld area and fracture parts after tensile shear test were observed using scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX) analysis system. And it was confirmed that Cu was easily melting and penetrating in the grain boundaries of SUS304 because of low melting temperature. And high thermal conductivity of copper occurred dissipate heat energy rapidly. These properties cause the solidification cracking in weld zone.

Development of a Composite Fiber Reinforcement Pavement using Eco-Friendly Grid and Dispersive Fibers (친환경 쉬트형 보강재 및 분산성 섬유를 적용한 복합 섬유 보강 포장 개발)

  • Park, Ju Won;Kim, Hyeong Su;Kim, Hyeok Jung;Kim, Sung Bo
    • International Journal of Highway Engineering
    • /
    • v.19 no.6
    • /
    • pp.57-66
    • /
    • 2017
  • PURPOSES : This study develops eco-friendly asphalt reinforcement materials applicable to bridge deck pavement. The main purpose is to ensure highly reliable quality applicable to structures and the possibility of practical application. The main target of the study is to develop materials that are environmentally friendly and capable of improving performance. METHODS : The application of double-reinforcement fiber improves the performance of the road pavement. 1. We use recycled film for application of sheet-typed reinforcement. 2. We use preprocessing fibers to reinforce the properties of composite pavement materials. RESULTS : The developed products may produce materials that fit the purpose of achieving stability and environmental friendliness. Sheet-typed reinforcements use more than 50% recycled resin. The most important type of damage to the asphalt layer is deflection (plastic deformation). These products have a very high deflection resistance of not less than 6,000 cycles/mm. In addition, all performance is excellent. Thus, it will be easier to access the field in the future. CONCLUSIONS : Fiber-reinforced asphalt pavement showed excellent performance. Sheet-typed reinforcements containing 50% recycling resin produced good performance in terms of functionality as well as environmental friendliness. Thus, enhancing the field applicability will enhance the usability of the reinforcements.

Simulation of Dispersion Compensation Transmission System Using Split-Step Finite Element Method (단계 분할 유한 요소법을 이용한 분산 보상 광 전송 시스템의 시뮬레이션)

  • Hong, Soon-Won;Lee, Ho-Joon
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.36D no.8
    • /
    • pp.79-86
    • /
    • 1999
  • A simulation of 10 Gbps optical fiber transmission system using DCf(dispersion compensating fiber) for the dispersion compensation is performed. In order to analyze the NRZ pulse propagation in nonlinear, dispersive and lossy fiber, the split-step finite element method that is combination of finite element method and finite difference method is used. Also, we obtained the optical eye diagram and BER characteristics at the receiver of the system that is contained the optical amplifier and system noises. As a result of simulation, we obtain that the dispersion penalty is about 0.8dB after 50km transmission and the receiver sensitivities at $10^{-9}$ BER are -27.4dBm with EDFA pre-amplifier of 12dB gain and -15.6dBm without EDFA.

  • PDF

Dispersion Map Optimization and Dispersion Slope Mismatch Issue on 40 Channel x 10 Gbit/s Transmission Over 3000 km Using Standard SMF and all EDFA Amplification (표준 단일모드 광섬유와 EDFA를 이용한 10 Gb/s 40 파장다중 채널 신호의 3000 km 전송에서 분산 보상 맵 최적화와 분산 기울기 불일치 영향)

  • Kim Min-Sung;Choi Bo-Hun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.1A
    • /
    • pp.1-9
    • /
    • 2005
  • We have studied the dispersion properties of a 40 channel x 10 Gbit/s wavelength division multiplexer(WDM) transmission link using standard single mode fiber with all EDFA amplification over 30 x 100 km spans. The dispersion map of the link was investigated by adding fiber sections with positive or negative dispersion at the transmitter, within each amplifier span, and at the receiver. Optimum combinations of these dispersive fiber lengths were attained to significantly enhance the overall transmission performance.

The Group Velocity of Lamb Wave Generated by the one Source in Unidirectional Laminated Composite Plates (일방향 적층 복합재료 판에서 한 음원에서 발생된 램파의 군속도)

  • Lee Jeong-Ki;Rhee Sang-Ho
    • The Journal of the Acoustical Society of Korea
    • /
    • v.25 no.3
    • /
    • pp.107-112
    • /
    • 2006
  • The elastic waves in a plate are dispersive waves due to the characteristics of Lamb waves. However, S0 symmetric mode is less dispersive in the frequency region below the first cut-off frequency. The wave Propagation velocities vary with the direction in anisotropic plates such as Carbon Fiber Reinforced Plastic (CFRP) Plates. The wave vector direction and energy flow vector direction are same in isotropic plates. However, the wave vector direction same as the phase velocity direction is not in accordance with the energy flow direction same as the group velocity direction in anisotropic plates. In this study. the dispersion curves or the phase velocity from anti-symmetric and symmetric Lamb wave dispersion equation are calculated for unidirectional laminated composite plate. Slowness surface is sketched using phase velocity under the first cut-off frequency. The direction and magnitude of group velocity are corrected with this slowness surface. The measured group velocities are in good agreement with the corrected group velocity curve except near the fiber direction zone which is called the cusp region.

Asbestos and Non-Asbestos Fiber Content in Lungs of Autopsied Subjects in Pohang with no Known History of Occupational Asbestos Exposure (포항지역 부검 폐조직에서 석면과 비석면 섬유농도에 관한 연구)

  • Lim, Hyun-Sul;Kim, Dong-Hoon;Sakai, Kiyoshi;Hisanaga, Naomi;Kim, Ji-Yong
    • Journal of Preventive Medicine and Public Health
    • /
    • v.33 no.4
    • /
    • pp.477-483
    • /
    • 2000
  • Objectives : To obtain reference values for the pulmonary asbestos and non-asbestos fiber contents of residents in Korea and to compare them with similar results from Japan. Methods : The autopsied lung specimens from 22 deceased people (20 males and 2 females) in Pohang, without any known occupational history of asbestos exposure, were analyzed for incidence of asbestos and non-asbestos fibers by transmission electron microscopy with energy dispersive X-ray analysis after using low temperature ashing procedures. Results : Chrysotite fiber (46.2%) was the major fiber type found in the lungs of the subjects. The asbestos fiber concentrations found in males and females were $0.09\times10^6$ fiberss(g of dry lungs) and $0.30\times10^6$ fibers/(g of dry lungs), respectively, showing a geometric mean concentration $0.09\times10^6$ fibers/(g of dry lung tissue), due to the predominance of males in the sample. The non-asbestos fiber contents in males and females were $4.61\times10^6$ fibers/(g of dry lungs) and $17.79\times10^6$ fibers/(g of dry lungs), respectively, with a geometric mean concentration $5.21\times10^6$ fibers/(g of dry lung tissue). Conclusions : Residents in Pohang had significantly lower levels of both asbestos and non-asbestos fibers than urban residents in Korea. Furthermore, Koreans had significantly lower levels of both asbestos and non-asbestos fibers than Japanese.

  • PDF

Evaluation of Biodurability of Korean Chrysotile withen The Lung of Rats (한국산 백석면의 랫드의 폐 내 변화 연구)

  • Chung, Yong Hyun;Han, Jeong Hee
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.25 no.1
    • /
    • pp.20-26
    • /
    • 2015
  • Objectives: To evaluate the biodurability of Korean Chrysotile(KC), the changes in fibers numbers and changes in the element composition of fibers from the lung of Sprague-Dawley rats instilled KC(average size $4.74{\mu}m$, $59,043{\times}10^6$ fibers/mg) was estimated. Methods: Rats were administered 1 mg KC(low group) or 2 mg KC(high group) by a single intratracheal instillation. At each time point(5 days, 5 weeks, 10 weeks), the numbers of KC fibers and the changes of element composition(atomic %) of KC fibers from the lung of the rats were analyzed with transmission electron microscope equipped with energy dispersive X-ray spectrometer. Results: Over time, the number of fibers within the lungs of animals were reduced. The average length of the low and high group is significantly reduced from 5 days after administration. Over time, the fiber ratio of at least $5{\mu}m$ remaining in the lung tissue of the low concentration group was up but the high group was reduced. From day 5 after administration, the composition ratio(Mg) was significantly decreased in all groups. Conclusions: Size and composition of Korean Chrysotile in the lung tissue of rats was changed from 5 days.

Analysis on Constituent Elements and Microstructure of Fiberglass Splint and Cast

  • Ham, Joo Hyun;Jung, Han Suk
    • Korean Journal of Materials Research
    • /
    • v.31 no.8
    • /
    • pp.433-438
    • /
    • 2021
  • In this study, microstructural characteristics and constituent elements of fiberglass splint and cast are examined using a scanning electron microscope and an energy dispersive X-ray spectrometer. As observed by the scanning electron microscope, fiberglass splint and cast had a porous structure with many bundles of fiberglass textures well assembled. Spaces between bundles of the fiberglass splint are triangular or elliptical shaped and the long-axis diameter is measured at about 1 mm. The thickness of fiber bundles covered with plaster is measured at 600 ㎛ and the diameter of a single strand of fiberglass is up to 10 ㎛. The thickness of the fiberglass bundle of the fiberglass splint is measured at about 700 ㎛. Spaces between bundles are formed in the shape of triangles with gentle edges and long-axis diameter of up to 1.4 mm, which is larger than that of the splint. The thickness of a single strand of fiberglass of the plaster-coated cast is 11.5 ㎛, which is thicker than that of fiberglass of the splint. As a result of analyzing constituent elements of the fiberglass cast and the splint with an energy dispersive X-ray spectrometer, Ca, Si, and Al components are identically detected. This result shows that the fiberglass cast has a smoother surface with hardened plaster than the fiberglass splint. The thickness of the fiberglass bundle and the thickness of a single strand of the fiberglass are also larger than those of the fiberglass splint.

Assessment of Acid Solubility Test on Korean Asbestos by Transmission Electron Microscope Equipped with Energy Dispersive X-ray Spectrometer (한국산 석면의 산 용해도 평가 연구)

  • Chung, Yong Hyun;Han, Jeong Hee
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.24 no.2
    • /
    • pp.146-151
    • /
    • 2014
  • Objectives: Chrysotile is mineralogically distinct from amphiboles, displaying a notably different chemical structure. The thin sheets that form chrysotile fiber lead to the ability of the lung/macrophage system to decompose the chrysotile fibers. This study was performed in order to compare the physicochemical characteristics of Korean asbestos with those of Canadian amphiboles. Materials: An acid solubility test for each test substance was done to compare pH 4.5 and pH 1.2 distilled water. Asbestos fibers which had been placed in acid solutions for five days, five weeks and weeks were analyzed with a transmission electron microscope equipped with an energy dispersive X-ray spectrometer (TEM-EDS). Results: The composition element (Mg) of Korean chrysotile, Korean anthophyllite and Canadian amosite significantly decreased from 5 days and also decreased significantly after 5 weeks and 10 weeks. Only the composition (Mg) of Canadian crocidolite did not change under any conditions. From 5 days, the Mg of Korean chrysotile, Korean anthophyllite and Canadian amosite were significantly lower than before the acid treatment, but there were no changes over time or by the pH of the acid solutions. Particularly after 10 weeks, the composition (Mg) of Korean chrysotile in the pH 1.2 acid solution showed a rapid reduction of 15.86%. Conclusions: Korean chrysotile was very weak in an acid environment, beginning to show significant changes after 5 days. The Mg component rapidly decreased after 10 weeks in the pH 1.2 acid solution.