• 제목/요약/키워드: Dispersion strengthening

검색결과 49건 처리시간 0.029초

Ultra-fine Grained and Dispersion-strengthened Titanium Materials Manufactured by Spark Plasma Sintering

  • Handtrack, Dirk;Sauer, Christa;Kieback, Bernd
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part2
    • /
    • pp.725-726
    • /
    • 2006
  • Ultra-fine grained and dispersion-strengthened titanium materials (Ti-Si, Ti-C, Ti-Si-C) have been produced by high energy ball milling and spark plasma sintering (SPS). Silicon or/and carbon were milled together with the titanium powder to form nanometer-sized and homogeneously distributed titanium silicides or/and carbides as dispersoids, that should prevent grain coarsening during the SPS compaction and contribute to strengthening of the material. The microstructures and the mechanical properties showed that strength, hardness and wear resistance of the sintered materials have been significantly improved by the mechanisms of grain refinement and dispersion strengthening. The use of an organic fluid as carrier of the dispersoid forming elements caused a significant increase in ductility.

  • PDF

티타늄이 첨가된 알루미나 분산강화 동합금의 산화물 형성 거동 (Oxidation Behavior of Ti Added Alumina Dispersion Strengthening Copper Alloy)

  • 조홍래;한승전;안지혁;이재현;손영국;김광호
    • 한국재료학회지
    • /
    • 제25권4호
    • /
    • pp.202-208
    • /
    • 2015
  • Alumina dispersion strengthening copper(ADSC) alloy has great potential for use in many industrial applications such as contact supports, frictional break parts, electrode materials for lead wires, and spot welding with relatively high strength and good conductivity. In this study, we investigated the oxidation behavior of ADSC alloys. These alloys were fabricated in forms of plate and round type samples by surface oxidation reaction using Cu-0.8Al, Cu-0.4Al-0.4Ti, and Cu-0.6Al-0.4Ti(wt%) alloys. The alloys were oxidized at $980^{\circ}C$ for 1 h, 2 h, and 4 h in ambient atmosphere. The microstructure was observed with an optical microscope(OM) and a scanning electron microscope(SEM) equipped with energy-dispersive X-ray spectroscopy(EDS). Characterization of alumina was carried out using a 200 kV field-emission transmission electron microscope(TEM). As a result, various oxides including Ti were formed in the oxidation layer, in addition to ${\gamma}$-alumina. The thickness of the oxidation layer increased with Ti addition to the Cu-Al alloy and with the oxidation time. The corrected diffusion equation for the plate and round type samples showed different oxidation layer thickness under the same conditions. Diffusion length of the round type specimen had a value higher than that of its plate counterpart because the oxygen concentration per unit area of the round type specimen was higher than that of the plate type specimen at the same diffusion depth.

Cold Compaction Behavior of Nano and Micro Aluminum Powder under High Pressure

  • Kim, Dasom;Park, Kwangjae;Kim, Kyungju;Cho, Seungchan;Hirayama, Yusuke;Takagi, Kenta;Kwon, Hansang
    • Composites Research
    • /
    • 제32권3호
    • /
    • pp.141-147
    • /
    • 2019
  • In this study, micro-sized and nano-sized pure aluminum (Al) powders were compressed by unidirectional pressure at room temperature. Although neither type of Al bulk was heated, they had a high relative density and improved mechanical properties. The microstructural analysis showed a difference in the process of densification according to particle size, and the mechanical properties were measured by the Vickers hardness test and the nano indentation test. The Vickers hardness of micro Al and nano Al fabricated in this study was five to eight times that of ordinary Al. The grain refinement effect was considered to be one of the strengthening factors, and the Hall-Petch equation was introduced to analyze the improved hardness caused by grain size reduction. In addition, the effect of particle size and dispersion of aluminum oxide in the bulk were additionally considered. Based on these results, the present study facilitates the examination of the effect of particle size on the mechanical properties of compacted bulk fabricated by the powder metallurgy method and suggests the possible way to improve the mechanical properties of nano-crystalline powders.

산화물 분산강화 표면처리에 따른 지르코늄 피복관의 기계적 강도 (Effects of Surface Treatment using Oxide-Dispersion-Strengthening on the Mechanical Properties of Zr-based Fuel Cladding Tubes)

  • 정양일;김일현;김현길;장훈;이승재
    • 한국재료학회지
    • /
    • 제29권4호
    • /
    • pp.271-276
    • /
    • 2019
  • Oxide-dispersion-strengthened (ODS) alloy has been developed to increase the mechanical strength of metallic materials; such an improvement can be realized by distributing fine oxide particles within the material matrix. In this study, the ODS layer was formed in the surface region of Zr-based alloy tubes by laser beam treatment. Two kinds of Zr-based alloys with different alloying elements and microstructures were used: KNF-M (recrystallized) and HANA-6 (partial recrystallized). To form the ODS layer, $Y_2O_3$-coated tubes were scanned by a laser beam, which induced penetration of $Y_2O_3$ particles into the substrates. The thickness of the ODS layer varied from 20 to $55{\mu}m$ depending on the laser beam conditions. A heat affected zone developed below the ODS layer; its thickness was larger in the KNF-M alloy than in the HANA-6 alloy. The ring tensile strengths of the KNF-M and HANA-6 alloy samples increased more than two times and 20-50%, respectively. This procedure was effective to increase the strength while maintaining the ductility in the case of the HANA-6 alloy samples; however, an abrupt brittle facture was observed in the KNF-M alloy samples. It is considered that the initial microstructure of the materials affects the formation of ODS and the mechanical behavior.

褥瘡의 治療에 關한 文獻的 考察 (A literature study on the treatments of the Decubitus ulcer)

  • 김홍진;최정화
    • 한방안이비인후피부과학회지
    • /
    • 제12권2호
    • /
    • pp.104-121
    • /
    • 1999
  • The results were as follows ; 1. The treatment method is most used reinforcing the spleen and strengthening of Ki(氣) detoxication and draining of pus on each stage. In first stage, the method of actirating blood and aeration of Lag(絡) nourishing blood and moisturizing skin is used. In ulcer stage, the method of expelling blood stasis and detoxication, promoting pus and drainage is used. In chronic stage, strengthening of Ki(氣) and blood, invigiration and dispersion is used. 2. In the frequency of prescription, the most numerous prescription is Paljintang(八珍湯) and the next are Insamyangyoungtang(人蔘養榮湯). Taglisodongum(托裏消耗飮) ect. In the frequency of medicine the most numerous medicine is Angelicae Gigantis Radix(當歸) and the next are Glycyrrhizae Radix (甘草), Astragali Radix(황기) etc. 3. In the frequency of prescription of exteral therapy. the most numerous prescription is Saengioghongo(生肌玉紅膏), Saengisan(生肌散) and the next are hongsungdan(紅升丹), guildan(九一丹) etc. In the frequency of medicine of exteral therapy, the most numerous medicine is Glycyrrhizae Radix (甘草) and the next are Calomelas(輕粉), Draconis Resina(血竭) etc.

  • PDF

Rheo-compocasting 및 열간압출에 의하여 제조한 Al-Si-Mg / $Al_2O_3$단섬유강화복합재료의 특성 (Characteristics of $Al_2O_3$ Short Fiber/Al-Si-Mg Alloy Composites Fabricated by Rheo-compocasting and Hot Extrusion)

  • 이학주;홍준표
    • 한국주조공학회지
    • /
    • 제11권4호
    • /
    • pp.293-302
    • /
    • 1991
  • Aluminum alloy matrix composites reinforced with various amounts of $Al_2O_3$ short fibers have been produced by a combined technique of rheo-compocasting and hot extrusion. Distribution of fibers in the composites fabricated by rheo-compocasting was relatively uniform. A good degree of uniaxial fiber alignment has been achieved by hot extrusion, but a lot of fibers fractured during extrusion. The tendency of fiber fracturing increases as the aspect ratio and the amount of fibers increase. Relatively good bonding between fiber and matrix was obtained by the formation of $MgAl_2O_4$ and Mg(Al, Fe)$_2O_4$ at the interface between fiber and matrix. In extruded composites, fiber-strengthening effect was relatively small since a lot of fibers fractured during hot extrusion. On the other hand, dispersion strengthening effect may increase. In order to improve the fiber strengthening effect, it is important to optimize the extrusion condition with consideration of metal flow in extrusion die.

  • PDF

살균에 박리 및 분산 기능이 추가된 친환경살균제에 대한 역삼투(RO)막에서의 효과 검증 연구 (Evaulation of Developing New-Fusion Eco-Friendly Biocide on the Reverse Osmosis Membranes)

  • 박덕준;오은정;김성한;안광택
    • 대한환경공학회지
    • /
    • 제38권9호
    • /
    • pp.497-503
    • /
    • 2016
  • 살균기능에 박리와 탈리기능 추가된 비유독물인 친환경살균제를 역삼투(RO)막 부착된 유기물 등 오염물질 제거를 위하여 현장 적용시 역삼투막 차압증가 도달시간을 기준 적용시 평균 93.0%의 개선효율을 보였다, 또한 친환경살균제를 사용한 역삼투막을 Autopsy한 결과, 무기 및 유기오염의 비율이 기존살균제에 비하여 친환경살균제를 사용한 역삼투막이 유기오염의 비율이 적은 것으로 조사됨에 따라 친환경살균제의 바이오필름 제거(분산, 박리) 및 살균력이 기존 약품보다 우수한 것으로 확인되었다.

분무성형 및 반응분무성형법으로 제조된 분산강화 동합금의 항복강도에 미치는 분산상의 영향 (The Effect of Dispersoid on Yield Strength of Dispersion Strengthened Cu Alloys Fabricated by Spray Forming and Reactive Spray Forming)

  • 이종상;정재영;이언식;박우진;안상호;김낙준
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1999년도 압출 및 인발 심포지엄
    • /
    • pp.38-46
    • /
    • 1999
  • Dispersion strengthened Cu alloys have been manufactured by spray forming and also by reactive spray forming, followed by hot extrusion of the spray deposited billets. The size of dispersed particles in the reactive spray formed alloy was much finer than that in the spray formed alloy. That was because the dominant chemical reaction between Ti and B had occurred in Cu-Ti-B alloy melt in spray forming while it had occurred after deposition of droplets in reactive spray forming. The yield strength of the reactive spray formed alloy was greater than that of the spray formed alloy. To understand the mechanism responsible for this observed strengthening, the yield strength of two Cu alloys were analyzed using the dislocation pile-up model and Orowan mechanism, which were fairly consistent with the experimental results. Increase in yield strength of reactive spray formed alloy relative to spray formed alloy was largely attributed to nano-scale TiB dispersoids.

  • PDF

산화물 분산 강화 강 분말이 첨가된 자동차 부품용 철계 복합 소재의 미세조직 및 마모 특성 (Microstructure and Wear Properties of Oxide Dispersion Strengthened Steel Powder Added Steel-Based Composite Material for Automotive Part)

  • 김영균;박종관;이기안
    • 한국분말재료학회지
    • /
    • 제25권1호
    • /
    • pp.36-42
    • /
    • 2018
  • In order to expand the application of oxide dispersion-strengthened (ODS) steel, a composite material is manufactured by adding mechanically alloyed ODS steel powder to conventional steel and investigated in terms of microstructure and wear properties. For comparison, a commercial automobile part material is also tested. Initial microstructural observations confirm that the composite material with added ODS steel contains i) a pearlitic Fe matrix area and ii) an area with Cr-based carbides and ODS steel particles in the form of a $Fe-Fe_3C$ structure. In the commercial material, various hard Co-, Fe-Mo-, and Cr-based particles are present in a pearlitic Fe matrix. Wear testing using the VSR engine simulation wear test confirms that the seatface widths of the composite material with added ODS steel and the commercial material are increased by 24% and 47%, respectively, with wear depths of 0.05 mm and 0.1 mm, respectively. The ODS steel-added composite material shows better wear resistance. Post-wear-testing surface and cross-sectional observations show that particles in the commercial material easily fall off, while the ODS steel-added material has an even, smooth wear surface.

The Thermal Stability and Elevated Temperature Mechanical Properties of Spray-Deposited $SiC_P$/Al-11.7Fe-1.3V-1.7Si Composite

  • Hao, L.;He, Y.Q.;Wang, Na;Chen, Z.H.;Chen, Z.G.;Yan, H.G.;Xu, Z.K.
    • Advanced Composite Materials
    • /
    • 제18권4호
    • /
    • pp.351-364
    • /
    • 2009
  • The thermal stability and elevated temperature mechanical properties of $SiC_P$/Al-11.7Fe-1.3V-1.7Si (Al-11.7Fe-1.3V-1.7Si reinforced with SiC particulates) composites sheets prepared by spray deposition (SD) $\rightarrow$ hot pressing $\rightarrow$ rolling process were investigated. The experimental results showed that the composite possessed high ${\sigma}_b$ (elevated temperature tensile strength), for instance, ${\sigma}_b$ was 315.8 MPa, which was tested at $315^{\circ}C$, meanwhile the figure was 232.6 MPa tested at $400^{\circ}C$, and the elongations were 2.5% and 1.4%, respectively. Furthermore, the composite sheets exhibited excellent thermal stability: the hardness showed no significant decline after annealing at $550^{\circ}C$ for 200 h or at $600^{\circ}C$ for 10 h. The good elevated temperature mechanical properties and excellent thermal stability should mainly be attributed to the formation of spherical ${\alpha}-Al_{12}(Fe,\;V)_3Si$ dispersed phase particulates in the aluminum matrix. Furthermore, the addition of SiC particles into the alloy is another important factor, which the following properties are responsible for. The resultant Si of the reaction between Al matrix and SiC particles diffused into Al matrix can stabilize ${\alpha}-Al_{12}(Fe,\;V)_3Si$ dispersed phase; in addition, the interface (Si layer) improved the wettability of Al/$SiC_P$, hence, elevated the bonding between them. Furthermore, the fine $Al_4C_3$ phase also strengthened the matrix as a dispersion-strengthened phase. Meanwhile, load is transferred from Al matrix to SiC particles, which increased the cooling rate of the melt droplets and improved the solution strengthening and dispersion strengthening.