• 제목/요약/키워드: Dispersion interaction

검색결과 241건 처리시간 0.022초

Self-Diffusion of Hydrophobically End-Capped Polyethylene Oxide Urethane Resin by Using Pulsed-Gradient Spin Echo NMR Spetroscopy

  • Park, Jinwoo;Daewon Sohn;Lee, Youngil;Chaejoon Cheong
    • Macromolecular Research
    • /
    • 제11권6호
    • /
    • pp.444-450
    • /
    • 2003
  • Hydrophobically End-capped polyethylene oxide Urethane Resin(HEUR)-associating polymers, HEUR 35(8), HEUR 35(12), and HEUR 35(18), comprise a polyethylene oxide (PEO) having a molecular weight of 35,000 that is end capped with two C$\_$8/H$\_$17/, C$\_$12/H$\_$25/, and C$\_$18/H$\_$37/ alkyl chains, respectively. These associating polymers were synthesized by condensation reactions with polyethylene oxides and alkyl isocyanates. The self-diffusion coefficients of HEUR-associating polymers were measured in aqueous solution by pulsed-gradient spin-echo (PGSE) nuclear magnetic resonance (NMR) spectroscopy. All polymers underwent a decrease in their mean diffusion coefficients as the concentration was increased. However, the dispersion of the diffusion coefficients, ${\beta}$, about the mean fluctuated with changes in concentration. The large dispersion at low concentrations of HEUR 35(8) and HEUR 35(12) is related to the interaction between hydrophobic end groups, and the large dispersion at high concentrations of HEUR 35(18) is correlated with transient network formation. These results are valuable for predicting the associating mechanism of the large aggregates before and after their critical micelle concentration.

잉크 분산 및 인쇄조건이 인쇄 모틀에 미치는 영향 (The Effects of Ink Dispersion and Printing Conditions on Printed Mottle)

  • 하영백;이용규;김창근;오성상;임종학
    • 펄프종이기술
    • /
    • 제38권4호
    • /
    • pp.41-46
    • /
    • 2006
  • Printed mottle of coated paper is one of the most common but the most difficult problem in offset printing. Printed mottle is caused by an uneven penetration of Ink into the paper, binder migration, etc. For a high quality printing, development of new paper coating technologies to prevent print mottle is required. So for, the study of solving printed mottle is coated paper absorption controlled by base paper sizing and coating layer binder migration control. As a results, printed mottle has improved in coated paper. But printing is worked by interaction of printing ink, coated paper and printing pressure, then we need to understand of interaction printing work and coated paper. This research focused on a way of improving printed mottle by investigating various printing conditions such as ink dispersion, nip condition and amount of ink transfer using IGT printability tester.

최적으로 색분산 보상된 광통신 시스템에서 신호 왜곡에 관한 근사적 수학식 연구 (Analytic Expression of the Signal Distortion in Dispersion-Managed Optical Transmission)

  • 김성만
    • 한국전자통신학회논문지
    • /
    • 제8권8호
    • /
    • pp.1235-1240
    • /
    • 2013
  • 본 논문에서는 색분산이 최적으로 보상된 광통신 시스템에서 자기위상변조와 색분산으로 인해 열화되는 신호의 아이페널티에 대해 근사적인 수학식을 유도하였다. 이러한 분석 연구를 통해 최적으로 색분산 보상된 광통신 시스템에서 신호의 왜곡에 대한 근사식을 얻을 수 있다. 우리는 이 근사식의 효용성을 보이기 위해서 이전 연구의 시뮬레이션 결과와 근사식의 결과를 비교하는 결과를 보인다. 본 논문의 결과를 이용하면 복잡한 비선형 시뮬레이션을 통해 얻을 수 있는 광신호의 왜곡에 대해 손쉽게 그 결과를 예측할 수 있으며, 각종 시스템 파라미터가 시스템에 미치는 영향도 쉽게 파악할 수 있다.

Impact of boundary layer simulation on predicting radioactive pollutant dispersion: A case study for HANARO research reactor using the WRF-MMIF-CALPUFF modeling system

  • Lim, Kyo-Sun Sunny;Lim, Jong-Myung;Lee, Jiwoo;Shin, Hyeyum Hailey
    • Nuclear Engineering and Technology
    • /
    • 제53권1호
    • /
    • pp.244-252
    • /
    • 2021
  • Wind plays an important role in cases of unexpected radioactive pollutant dispersion, deciding distribution and concentration of the leaked substance. The accurate prediction of wind has been challenging in numerical weather prediction models, especially near the surface because of the complex interaction between turbulent flow and topographic effect. In this study, we investigated the characteristics of atmospheric dispersion of radioactive material (i.e. 137Cs) according to the simulated boundary layer around the HANARO research nuclear reactor in Korea using the Weather Research and Forecasting (WRF)-Mesoscale Model Interface (MMIF)-California Puff (CALPUFF) model system. We examined the impacts of orographic drag on wind field, stability calculation methods, and planetary boundary layer parameterizations on the dispersion of radioactive material under a radioactive leaking scenario. We found that inclusion of the orographic drag effect in the WRF model improved the wind prediction most significantly over the complex terrain area, leading the model system to estimate the radioactive concentration near the reactor more conservatively. We also emphasized the importance of the stability calculation method and employing the skillful boundary layer parameterization to ensure more accurate low atmospheric conditions, in order to simulate more feasible spatial distribution of the radioactive dispersion in leaking scenarios.

폭발파에 의한 음향파 생성 메커니즘의 수치적 연구 (Numerical Study of Sound Generation Mechanism by a Blast Wave)

  • 빈종훈
    • 한국소음진동공학회논문집
    • /
    • 제19권10호
    • /
    • pp.1053-1061
    • /
    • 2009
  • The goal of this paper is to investigate the generation characteristics of the main impulsive noise sources generated by the supersonic flow discharging from a muzzle. For this, this paper investigates two fundamental mechanisms to sound generation in shocked flows: shock motion and shock deformation. Shock motion is modeled numerically by examining the interaction of a sound wave with a shock. The numerical approach is validated by comparison with results obtained by linear theory for a small disturbance case. Shock deformations are modeled numerically by examining the interaction of a vortex ring with a blast wave. A numerical approach of a dispersion-relation-preserving(DRP) scheme is used to investigate the sound generation and propagation by their interactions in near-field.

Anion Photoelectron Spectroscopy and Theoretical Calculation of the Hetero-dimers of Polycyclic Aromatic Hydrocarbons

  • Kim, Namdoo;Lee, Sang Hak
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권5호
    • /
    • pp.1441-1444
    • /
    • 2013
  • Hetero-dimer anions of naphthalene (Np), anthracene (An), phenanthrene (Ph) and pyrene (Py) were investigated using the time-of-flight mass spectrometer (TOF-MS), anion photoelectron spectroscopy (PES) and theoretical calculation. There are two possible geometries with their electron affinity (EA) difference: parallel displaced (PD) and T-shaped. Dispersion force plays a key role in PD structure with the formation of a new anionic core while ${\pi}$-hydrogen interaction plays a key role in T-shaped structure with the monomer anionic core. The optimized structures and charge distributions can simply be explained by the relative difference of EA.

Optical phonon and scattering in uniaxial crystals

  • Lee, B.C
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2000년도 제18회 학술발표회 논문개요집
    • /
    • pp.118-118
    • /
    • 2000
  • We investigate Frohlich-like electron--optical-phonon interactionsin uniaxial crytals based on the macroscopic dielectric continuum model. In general, the optical-phonon branches support mixed longitudinal and transverse modes due to the anisotropy. For heterostructures with double interfaces and superlattices, it is known that confined, interface, and half-space optical phonon modes exist in zincblende cystals. In uniaxial structures, additional propagating modes may exist in wurtzite heterosystems due to anisotropic phonon dispersion. This is especially the case when the dielectric properties of the adjacent heterostructure materials do not differ substantially. The dispersion relations and the interaction Hamiltonians for each of these modes are derived.

  • PDF

Consideration of Long and Middle Range Interaction on the Calculation of Activities for Binary Polymer Solutions

  • Lee, Seung-Seok;Bae, Young-Chan;Sun, Yang-Kook;Kim, Jae-Jun
    • Macromolecular Research
    • /
    • 제16권4호
    • /
    • pp.320-328
    • /
    • 2008
  • We established a thermodynamic framework of group contribution method based on modified double lattice (MDL) model. The proposed model included the long-range interaction contribution caused by the Coulomb electrostatic forces, the middle-range interaction contribution from the indirect effects of the charge interactions and the short-range interaction from modified double lattice model. The group contribution method explained the combinatorial energy contribution responsible for the revised Flory-Huggins entropy of mixing, the van der Waals energy contribution from dispersion, the polar force, and the specific energy contribution from hydrogen bonding. We showed the solvent activities of various polymer solution systems in comparison with theoretical predictions based on experimental data. The proposed model gave a very good agreement with the experimental data.

폴리(에틸 아크릴레이트-co-t-부틸 아크릴레이트)/ 실리카 나노복합체 특성에 대한 계면 개질의 효과 (Effect of Interfacial Modification on the Characteristics of Poly(ethyl acrylate-co-t-butyl acrylate)/Silica Nanocomposites)

  • 진선욱;한건옥;김형일
    • 폴리머
    • /
    • 제28권6호
    • /
    • pp.487-493
    • /
    • 2004
  • 계면간 상호작용이 약한 폴리(에틸 아크릴레이트-co-t-부틸 아크릴레이트) (PEB) 에멀션 고분자를 사용한 나노복합체 혼합용액에서는 pH변화에 따라 고분자 입자들과 실리카 나노입자들의 분포 형태가 결정되었다. 이러한 나노복합체는 실리카 입자의 응집이 심하였고 불규칙적인 분산성을 나타내었다. 메타아크릴옥시프로필트리메톡시실란 (MPS)를 사용하여 개질한 용액 중합 고분자나 실리카 나노입자를 사용한 나노복합체에서는 계면간 강한 상호작용으로 인하여 실리카 나노입자가 미세하게 분산되었고 코어-쉘 형태학적 특성을 나타냈다. 계면을 MPS로 개질한 나노복합체에서는 강한 수소 결합 상호작용이 존재하는 것을 적외선 분광계로 확인하였다. 강한 계면 상호작용을 갖는 나노복합체는 고분자 사슬의 유리 전이 온도가 증가하였고 ΔC$_{p}$ 는 감소하였으며 열분해 온도는 상승되었다.며 열분해 온도는 상승되었다.

Electron Microburst Energy Dispersion Calculated by Test Particle Simulation

  • Lee, Jae-Jin;Kim, Yeon-Han;Park, Young-Deuk
    • 천문학회보
    • /
    • 제36권2호
    • /
    • pp.94.2-94.2
    • /
    • 2011
  • Electron microbursts, energetic electron precipitation having duration less than 1 sec, have been thought to be generated by chorus wave and electron interactions. While the coincidence of chorus and microburst occurrence supports the wave-particle interaction theory, more crucial evidences have not been observed to explain the origin of microbursts. We propose the measurement of energy dispersion of microbursts could be an evidence supporting wave-particle theory. During chorus waves propagate along magnetic field, the resonance condition should be satisfied at different magnetic latitude for different energy electrons. If we observed electron microbursts at low altitude, the arrival time of different energy electrons should make unique dispersion structures. In order to observe such energy dispersion, we need a detector having fast time resolution and wide energy range. Our study is motivated from defining the time resolution and energy range of the detectors required to measure microburst energy dispersions. We performed test particles simulation to investigate how electrons interact with simple coherent waves like chorus waves. We compute a large number of electron's trajectories and successfully produce energy dispersion structures expected when microbursts are observed with 10 msec time resolution detectors at the altitude of 600 km. These results provide useful information in designing electron detectors for the future mission.

  • PDF