• 제목/요약/키워드: Dispersion characteristic

검색결과 216건 처리시간 0.024초

Derivation of the Foschini and Shepp's Joint-Characteristic Function for the First-and Second-Order Polarization-Mode-Dispersion Vectors Using the Fokker-Planck Method

  • Lee, Jae-Seung
    • Journal of the Optical Society of Korea
    • /
    • 제12권4호
    • /
    • pp.240-243
    • /
    • 2008
  • Using the well-known Fokker-Planck method, this paper presents a standard way to find the joint-characteristic function for the first- and second-order polarization-mode-dispersion vectors originally derived by Foschini and Shepp. Compared with the Foschini and Shepp's approach, the Fokker-Planck approach gives a more accurate and straightforward way to find the joint-characteristic function.

지형학적 분산을 고려한 특성유속이 순간단위도 형상에 미치는 영향 (The Impact of Characteristic Velocities Considering Geomorphological Dispersion on Shape of Instantaneous Unit Hydrograph)

  • 최용준;김주철;황만하
    • 한국수자원학회논문집
    • /
    • 제43권4호
    • /
    • pp.399-408
    • /
    • 2010
  • 본 연구에서는 지형학적 분산을 고려한 특성유속에 따른 Nash 모형 매개변수의 민감도 분석을 실시하였다. 또한 이러한 특성유속의 변동에 따른 순간단위도의 형상의 변화를 수치실험을 통해 비교 분석하였다. 대상유역은 보청천 유역 중 본류에 위치하고 있는 4개의 소유역을 선정하였다. 각 대상유역에 대해 지리정보체계를 이용하여 지표면과 하천의 배수경로길이에 대한 평균과 분산을 산정하였다. 산정된 배수경로길이와 특성유속에 의한 Nash 모형 매개변수를 추정하였다. 추정된 매개변수에 의해 순간단위도를 유도하여 형상의 변화를 비교하였다. 이러한 연구를 통해 도출된 주요 결과는 다음과 같다. Nash 모형 매개변수는 지표면 특성유속에 민감하게 반응함을 알 수 있었다. 또한 순간단위도의 감수부의 형상과 첨두유량은 지표면 특성유속에 지배적인 영향을 받으며, 순간단위도의 상승부의 형상과 첨두시간은 하천 특성유속에 지배적인 영향을 받음을 알 수 있었다.

Joint-characteristic Function of the First- and Second-order Polarization-mode-dispersion Vectors in Linearly Birefringent Optical Fibers

  • Lee, Jae-Seung
    • Journal of the Optical Society of Korea
    • /
    • 제14권3호
    • /
    • pp.228-234
    • /
    • 2010
  • This paper presents the joint characteristic function of the first- and second-order polarization-modedispersion (PMD) vectors in installed optical fibers that are almost linearly birefringent. The joint characteristic function is a Fourier transform of the joint probability density function of these PMD vectors. We regard the random fiber birefringence components as white Gaussian processes and use a Fokker-Planck method. In the limit of a large transmission distance, our joint characteristic function agrees with the previous joint characteristic function obtained for highly birefringent fibers. However, their differences can be noticeable for practical transmission distances.

일반적인 SN비에 관한 소고 (A Note on Generalized Signal-to-Noise Ratios)

  • 임용빈;이영조
    • 품질경영학회지
    • /
    • 제25권4호
    • /
    • pp.88-98
    • /
    • 1997
  • For quality improvement, it is important to reduce variations of the quality characteristic. That can be achieved by the a, pp.ication of parameter design methodology to make the performance of the quality characteristic robust over the variety of noise conditions. Taguchi has used the signal-to-noise ratios for that purpose. For the static target characteristic and the dynamic characteristic problem, we propose a reasonable generalized SN ratio and p-value plot for identifying dispersion factors. The orginal idea of the p-value plot in from the gamma-plot in Lunani, Nair & Wasserman(1995). The graphic advantage of the p-value polt for identifying dispersion factors is illustrated through constructed examples.

  • PDF

수중둔덕의 거동특성 해석을 위한 수학적 모형 (Mathematical Model for Analysis on the Behaviours of Submerged Mound Constructed by the Dredged Materials)

  • 최한규;이오성
    • 산업기술연구
    • /
    • 제19권
    • /
    • pp.391-402
    • /
    • 1999
  • The numerical model predicting the behaviours of submerged mound constructed by dredged material is developed in this paper. The model is based on the Bailard's sediment transport formula, Stokes' second-order wave theory and the sediment balance equation. Nonlinear partial differential equation which is the same form as convection-dispersion equation which represents change of bed section can be obtained by substituting sediment transport equation for equation of sediment conservation. By this process, the analytical solution by which the characteristic of the behaviours of submerged mound can be estimated is derived by probably combining the convention coefficient and the dispersion coefficient governing the behaviours of submerged mound and the probability density function representing the wave characteristics. The validity of the analytical solution is verified by comparing the analytical solution which is assumed to estimate the movement rate submerged mound by bed-load with the field data of the past and its characteristic is analyzed quantitatively by obtaining the mean of the dispersion coefficient representing the extent of the decrease rate of the submerged mound height.

  • PDF

부등류조건에서 종확산방정식의 Eulerian-Lagrangian 모형 (Eulerian-Lagrangian Modeling of One-Dimensional Dispersion Equation in Nonuniform Flow)

  • 김대근;서일원
    • 한국환경과학회지
    • /
    • 제11권9호
    • /
    • pp.907-914
    • /
    • 2002
  • Various Eulerian-Lagrangian models for the one-dimensional longitudinal dispersion equation in nonuniform flow were studied comparatively. In the models studied, the transport equation was decoupled into two component parts by the operator-splitting approach; one part is governing advection and the other is governing dispersion. The advection equation has been solved by using the method of characteristics following fluid particles along the characteristic line and the results were interpolated onto an Eulerian grid on which the dispersion equation was solved by Crank-Nicholson type finite difference method. In the solution of the advection equation, Lagrange fifth, cubic spline, Hermite third and fifth interpolating polynomials were tested by numerical experiment and theoretical error analysis. Among these, Hermite interpolating polynomials are generally superior to Lagrange and cubic spline interpolating polynomials in reducing both dissipation and dispersion errors.

단일모드 광섬유에서의 편광모드분산 특성에 관한 연구 (A Study of PMD Characteristic in Single Mode Optical Fiber)

  • 이청학;김성탁;김기대;박대희
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1999년도 춘계학술대회 논문집
    • /
    • pp.201-204
    • /
    • 1999
  • Polarization mode dispersion (PMD) restrict the bend-width of single mode optical filer, and it is important parameter in the optical fiber having long-length. Although fiber has perfect circular symmetry, fiber bending, twisting and laws governing manufacture cause additional Polarization mode dispersion. The effect of polarization mode dispersion in general single mode fiber of long length is discussed in this paper. Measurement of PMD with random mode coupling were conducted in two kind of fibers using different laws governing manufacture and interferometric method.

  • PDF

미계측 유역의 유출량 산정을 위한 합성단위도 개발 (Development of Synthetic Unit Hydrograph for Estimation of Runoff in Ungauged Watershed)

  • 최용준;김주철;정동국
    • 한국물환경학회지
    • /
    • 제26권3호
    • /
    • pp.532-539
    • /
    • 2010
  • The synthetic unit hydrograph is developed and verified using Nash model and characteristic velocities considering geomorphological dispersion in this present study. Application watersheds are selected 5 subwatersheds of Bocheong basin. The mean and variance of hillslope and stream path length are estimated in each watershed with GIS. Characteristic velocities are calculated using estimated path lengths and moment characteristics of rainfall-runoff data. Characteristic velocities of random devised 7 ungauged watersheds are estimated through regional analysis of chracteristic velocities in guaged watershed. And Nash model parameters and IUH are derived using characteristic velocities and path length in the gauged and ungauged watershed. The result to compare of IUH about gauged watershed and random devised ungauged watershed in application watershed presents coherently hydrologic response characteristics that peak discharge is reduced and peak time is extended. In conclusion, Developed synthetic unit hydrograph in this study expects that it is useful method to estimate runoff discharge for managing of water pollution in ungauged watershed.

CFD를 이용한 쓰레기 처리시설의 악취확산 예측에 관한 연구 (A Study on Odor Dispersion Prediction of Waste Treatment Facilities Using CFD)

  • 경서경;김공숙;김병선
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2009년도 추계학술발표대회 논문집
    • /
    • pp.342-349
    • /
    • 2009
  • The purpose of this study is to estimate efficiently an odor dispersion from waste treatment facility for a crematory and a neighborhood facility, then propose planning, a location of an opening or the arrangement of the trees. Hence, offer a comfortable environment for a resident. For this, first the research data about estimating odor dispersion from waste treatment facility and odor are analyzed, then research an ingredient, characteristic, a direct effect for human and a method of measurement. Second, with on-site survey, check odorimetry and the source of odor dispersion, then apply this to the boundary condition of CFD simulation. Third, analyse by the hour for the 2008 standard weather data of Cheon-an, then apply summer data that odor dispersion is active, winter data relatively slow and an annual mean velocity and wind to the simulation. Even if a crematory and neighborhood facility located on south and north from waste treatment facility are at the low rate, the south and north wind will be applied to the simulation. Fourth, with CFD simulation result, predict an odor dispersion, then propose a solution which is considered an odor dispersion, a location of an opening and the arrangement of the trees. Consequently, this study will have an effect on an environment of a resident.

  • PDF

Numerical Modeling of One-Dimensional Longitudinal Dispersion Equation using Eulerian Method

  • Seo, Il-Won;Kim, Dae-Geun
    • Korean Journal of Hydrosciences
    • /
    • 제6권
    • /
    • pp.51-66
    • /
    • 1995
  • Various Eulerian-Lagerangian numerical models for the one-dimensional longtudinal dispersion equation are studied comparatively. In the models studied, the transport equation is decoupled into two component parts by the operator-splitting approach ; one part governing advection and the other dispersion. The advection equation has been solved using the method of characteristics following flud particles along the characteristic line and the result are interpolated onto an Eulerian grid on which the dispersion equation is solved by Crank-Nicholson type finite difference method. In solving the advection equation, various interpolation schemes are tested. Among those, Hermite interpo;ation po;ynomials are superor to Lagrange interpolation polynomials in reducing both dissipation and dispersion errors.

  • PDF