• Title/Summary/Keyword: Dispersion Curves

Search Result 217, Processing Time 0.027 seconds

Dispersion Curves and Dispersion Characteristics Expected from Different Borehole Environments (시추공 환경변화에 따른 분산곡선 및 분산특성)

  • Zhao, Weijun;Kim, Yeong-Hwa;Kim, Jong-Man
    • The Journal of Engineering Geology
    • /
    • v.17 no.3
    • /
    • pp.329-337
    • /
    • 2007
  • For seven NX sized borehole models constructed from physical property data for representative geology in Korea, dispersion curves were derived and compared between models having different physical parameters. By comparing and analyzing the dispersion curves obtained from different sources (monopole and dipole) and different borehole sizes (76 mm and 150 mm), dispersion characteristics in sonic log could be understood better, particularly in the case of slim hole sonic log.

Effective time-frequency characterization of Lamb wave dispersion in plate-like structures with non-reflecting boundaries

  • Wang, Zijian;Qiao, Pizhong;Shi, Binkai
    • Smart Structures and Systems
    • /
    • v.21 no.2
    • /
    • pp.195-205
    • /
    • 2018
  • Research on Lamb wave-based damage identification in plate-like structures depends on precise knowledge of dispersive wave velocity. However, boundary reflections with the same frequency of interest and greater amplitude contaminate direct waves and thus compromise measurement of Lamb wave dispersion in different materials. In this study, non-reflecting boundaries were proposed in both numerical and experimental cases to facilitate time-frequency characterization of Lamb wave dispersion. First, the Lamb wave equations in isotropic and laminated materials were analytically solved. Second, the non-reflecting boundaries were used as a series of frames with gradually increased damping coefficients in finite element models to absorb waves at boundaries while avoiding wave reflections due to abrupt property changes of each frame. Third, damping clay was sealed at plate edges to reduce the boundary reflection in experimental test. Finally, the direct waves were subjected to the slant-stack and short-time Fourier transformations to calculate the dispersion curves of phase and group velocities, respectively. Both the numerical and experimental results suggest that the boundary reflections are effectively alleviated, and the dispersion curves generated by the time-frequency analysis are consistent with the analytical solutions, demonstrating that the combination of non-reflecting boundary and time-frequency analysis is a feasible and reliable scheme for characterizing Lamb wave dispersion in plate-like structures.

A Numerical Analysis on Elastodynamic Dispersion Phenomena of Composite Pipes

  • Cho, Youn-Ho;Lee, Chong-Myong;Rose Joseph L.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.25 no.3
    • /
    • pp.222-227
    • /
    • 2005
  • An efficient technique fur the calculation of guided wave dispersion curves in composite pipes is presented. The technique uses a forward-calculating variational calculus approach rather than the guess and iterate process required when using the more traditional partial wave superposition technique. The formulation of each method is outlined and compared. The forward-calculating formulation is used to develop finite element software for dispersion curve calculation. Finally, the technique is used to calculate dispersion curves for several structures, including an isotropic bar, two multi-layer composite bars, and a composite pipe.

UNIVERSAL DISPERSION EQUATION FOR MAGNETOSTATIC WAVES(MSW)

  • Wenzhong, Hu
    • Journal of the Korean Magnetics Society
    • /
    • v.5 no.5
    • /
    • pp.383-386
    • /
    • 1995
  • A universal dispersion equation for magnetostatic waves(MSW) propagating in the film with arbitrary-multiple magnetic layers magnetized in an arbitrary direction was derived with a matching boundary condition method. The computing result curves of delay time were shown.

  • PDF

Propagation characteristics of ultrasonic guided waves in tram rails

  • Sun, Kui;Chen, Hua-peng;Feng, Qingsong;Lei, Xiaoyan
    • Structural Engineering and Mechanics
    • /
    • v.75 no.4
    • /
    • pp.435-444
    • /
    • 2020
  • Ultrasonic guided wave testing is a very promising non-destructive testing method for rails, which is of great significance for ensuring the safe operation of railways. On the basis of the semi-analytical finite element (SAFE) method, a analytical model of 59R2 grooved rail was proposed, which is commonly used in the ballastless track of modern tram. The dispersion curves of ultrasonic guided waves in free rail and supported rail were obtained. Sensitivity analysis was then undertaken to evaluate the effect of rail elastic modulus on the phase velocity and group velocity dispersion curves of ultrasonic guided waves. The optimal guided wave mode, optimal excitation point and excitation direction suitable for detecting rail integrity were identified by analyzing the frequency, number of modes, and mode shapes. A sinusoidal signal modulated by a Hanning window with a center frequency of 25 kHz was used as the excitation source, and the propagation characteristics of high-frequency ultrasonic guided waves in the rail were obtained. The results show that the rail pad has a relatively little influence on the dispersion curves of ultrasonic guided waves in the high frequency band, and has a relatively large influence on the dispersion curves of ultrasonic guided waves in the low frequency band below 4 kHz. The rail elastic modulus has significant influence on the phase velocity in the high frequency band, while the group velocity is greatly affected by the rail elastic modulus in the low frequency band.

The influence of the rheological parameters on the dispersion of the flexural waves in a viscoelastic bi-layered hollow cylinder

  • Kocal, Tarik;Akbarov, Surkay D.
    • Structural Engineering and Mechanics
    • /
    • v.71 no.5
    • /
    • pp.577-601
    • /
    • 2019
  • The paper investigates the influence of the rheological parameters which characterize the creep time, the long-term values of the mechanical properties of viscoelastic materials and a form of the creep function around the initial state of a deformation of the materials of the hollow bi-layered cylinder on the dispersion of the flexural waves propagated in this cylinder. Constitutive relations for the cylinder's materials are given through the fractional exponential operators by Rabotnov. The dispersive attenuation case is considered and numerical results related to the dispersion curves are presented and discussed for the first and second modes under the first harmonic in the circumferential direction. According to these results, it is established that the viscosity of the materials of the constituents causes a decrease in the flexural wave propagation velocity in the bi-layered cylinder under consideration. At the same time, the character of the influence of the rheological parameters, as well as other problem parameters such as the thickness-radius ratio and the elastic modulus ratio of the layers' materials on the dispersion curves, are established.

Guided Wave Calculation and Its Applications to NDE

  • Hayashi, Takahiro
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.24 no.2
    • /
    • pp.125-135
    • /
    • 2004
  • This paper describes the calculation technique for guided wave propagation with a semi-analytical finite element method (SAFEM) and shows some results of numerical calculation and guided wave simulation for plates, pipes and railway rails. The SAFEM calculation gives dispersion curves and wave structures for bar-like structures. Dispersion curve software for a pipe is introduced, and also dispersion corves for a rail are given and experimentally verified. The mode conversions in a plate with a defect and in a pipe with an elbow or a defect are shown as examples of our guided wave simulations.

Determination of Phase Velocity Dispersion Curve and Group Velocity of lamb Waves Using Backward Radiation (후방복사를 이용한 램파의 위상속도 분산과 군속도의 측정)

  • 송성진;권성덕;정용무;김영환
    • The Journal of the Acoustical Society of Korea
    • /
    • v.22 no.1
    • /
    • pp.61-68
    • /
    • 2003
  • The guided wave has been widely employed to characterize thin plates and layered media. The dispersion curves of phase and group velocities are essential for the quantitative application of guided waves. In the present work, a fully automated system for the measurement of backward radiation of LLW has been developed. The specimen moves in two dimensional plane as well as in angular rotation. The signals of backward radiation of LLW were measured from an elastic plate in which specific modes of Lamb wave were strongly generated. Phase velocity of the corresponding modes was determined from the incident angle. The generated Lamb waves propagated forward and backward with the leakage of energy into water. Backward radiated LLW was detected by the same transducer and its frequency components were analyzed to extract the related information to the dispersion curves. The dispersion curves of phase velocity were measured by varying the incident angle. Moving the specimen in the linear direction of LLW propagation, group velocity was determined by measuring the transit time shift in the ultrasonic waveform.

A Study on Application of HWAW Method to the Non-horizontally Layered Soil Structure (HWAW 기법의 비수평 출상구조지반 적용에 대한 고찰)

  • Bang, Eun-Seok;Park, Heon-Joon;Park, Hyung-Choon;Kim, Dong-Soo
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.4
    • /
    • pp.5-17
    • /
    • 2009
  • In HWAW method, experimental dispersion curve is obtained through time-frequency analysis, and inversion procedure is based on the forward modeling which considers full wavefield. Therefore, it enables us to use relatively short testing setup and has advantage for two dimensional subsurface imaging compared with another surface wave methods. Numerical study was performed to verify that the HWAW method can be applied to non-horizontally layerd soil structure. The experimental dispersion curves obtained from HWAW method agreed with the theoretical dispersion curves based on full wavefield. Experimental dispersion curves are mainly more affected by the region between two receivers than by the region from source to the first receiver. Fluctuation phenomena of dispersion curve can be reduced by adequate receiver spacing setup. From numerical study, it was thought that reliable Vs distribution map can be constructed by HWAW method and finally subsurface imaging was tried in the real field.

Development of a Guided Wave Technique for the Inspection of a Feeder Pipe in a Pressurized Heavy Water Reactor

  • Cheong, Yong-Moo;Lee, Dong-Hoon;Kim, Sang-Soo;Jung, Hyun-Kyu
    • Corrosion Science and Technology
    • /
    • v.4 no.3
    • /
    • pp.108-113
    • /
    • 2005
  • One of the recent safety issues in the pressurized heavy water reactor (PHWR) is the cracking of the feeder pipe. Because of the limited accessibility to the cracked region and a high dose of radiation exposure, it is difficult to inspect all the pipes with the conventional ultrasonic method. In order to solve this problem, a long-range guided wave technique has been developed. A computer program to calculate the dispersion curves in the pipe was developed and the dispersion curves for the feeder pipes in PHWR plants were determined. Several longitudinal and/or flexural modes were selected from the review of the dispersion curves and an actual experiment has been carried out with the specific alignment of the piezoelectric ultrasonic transducers. They were confirmed as L(0,1)) and/or flexural modes(F(m,2)) by the short time Fourier transformation(STFT) and were sensitive to the circumferential cracks, but not to the axial cracks in the pipe. An electromagnetic acoustic transducers(EMAT) was designed and fabricated for the generation and reception of the torsional guided wave. The axial cracks were detected by a torsional mode(T(0,1)) generated by the EMAT.