• 제목/요약/키워드: Dispersion Characteristics

검색결과 1,286건 처리시간 0.029초

SITE-SPECIFIC ATMOSPHERIC DISPERSION CHARACTERISTICS OF KOREAN NUCLEAR POWER PLANT SITES

  • Han, M.H.;Kim, E.H.;Suh, K.S.;Hwang, W.T.;Choi, Y.G.
    • Journal of Radiation Protection and Research
    • /
    • 제26권3호
    • /
    • pp.305-309
    • /
    • 2001
  • Site-specific atmospheric dispersion characteristics have been analyzed. The northwest and the southwest wind prevail on nuclear sites of Korea. The annual isobaric surface averaged for twenty years around Korean peninsula shows that west wind prevails. The prevailing west wind is profitable in the viewpoint of radiation protection because three of four nuclear sites are located in the east side. Large scale field tracer experiments over nuclear sites have been conducted for the purpose of analyzing the atmospheric dispersion characteristics and validating a real-time atmospheric dispersion and dose assessment system FADAS. To analyze the site-specific atmospheric dispersion characteristics is essential for making effective countermeasures against a nuclear emergency.

  • PDF

Manufacturing and Characteristics Analysis of PU/MWNT Composite Film for Forming (발포용 PU/MWNT 복합필름의 제조와 특성분석)

  • Park, Jun-Hyeong;Kim, Jeong-Hyun;Kim, Seung-Jin
    • Textile Coloration and Finishing
    • /
    • 제22권4호
    • /
    • pp.362-372
    • /
    • 2010
  • This paper surveys the physical properties of the multiwall carbon nanotube (MWNT) and polyurethane composite film for improvement of mechanical properties and electrical characteristics. The modification of MWNT was carried out by acid treatment with nitric and sulphuric acid mixed solution, and then followed by thermal treatment for enhancing MWNT dispersion with polyurethane. This modified MWNT was mixed with polyurethane by changing the loading content of MWNT and dispersion time under the dimethylformamide solution in the ultrasonic wave apparatus. Various physical characteristics of the modified PU/MWNT films were measured and analyzed in terms of the loading content and dispersion time. The maximum absorbance of the PU/MWNT films were observed with the 2wt% loading at dispersion times of 2 and 24 hour, respectively. The minimum electrical volume resistivity of PU/MWNT film was shown at the loading content of 0.5wt% or more irrespective of dispersion treating time. However the optimum condition was assumed to 2wt% loading at dispersion time of 2 hours by assessing the surface profile of the film using video microscope. The breaking stress and strain of the PU/MWNT film decreased with increasing loading content, but no change of physical properties was shown with increasing in dispersion time.

Design of quadruple-clad, dispersion-flattened optical fibers with ultra-low dispersion at ${\lambda}=1.55{\mu}m$ (${\lambda}=1.55{\mu}m$에서 극저분산을 갖는 사중-클래드 평탄분산 광섬유의 설계)

  • 정석원;김창민
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • 제32A권8호
    • /
    • pp.140-152
    • /
    • 1995
  • Derived was the scalar wave equation of optical fibers. Based on the derived equation, the dispersion characteristics of arbitrarily profiled fibers were analyzed. We applied the 1-D FEM employing quadratic interpolation fucntions to solve the scalar wave equation. To find the optimum index distribution of a fiber that has the ultra-low total dispersion, we analyzed QC fibers as objects. Adding 2$_{nd}$ and 3$_{rd}$ clads to DC fiber, we investigated the change of dispersion characteristics. We found the QC fiber parameters for which the dispersion was ultra-low flattened, less than 0.5 ps/km.nm for ${\lambda}=1.4~1.6{\mu}m$, and the dispersion value was as low as 0.20 ps/km.nm at ${\lambda}=1.55{\mu}m$.

  • PDF

Compensation Characteristics of WDM Signals Depending on RDPS Slope of Fiber Span in Dispersion Managed Optical Transmission Links (분산 제어 광전송 링크에서 중계 구간의 RDPS 기울기에 따른 WDM 신호의 보상 특성)

  • Lee, Seong-Real
    • Journal of Advanced Navigation Technology
    • /
    • 제17권2호
    • /
    • pp.208-217
    • /
    • 2013
  • The optimal residual dispersion per span (RDPS) slope is induced through the analyses of the compensation characteristics of the wavelength division multiplexed (WDM) channels depending on RDPS slope in the optical links with a dispersion management (DM) and an optical phase conjugation. The simulation results show that the effective launch power of WDM is more increased and the performance difference between the channels is more decreased as RDPS slope is more increased. The simulation results also show that the effective net residual dispersion (NRD) range is more increased as RDPS slope is more increased, and consequently, it is more advantageous to use the large RDPS slope for implementing the flexible optical links.

Analytical Study for dispersed Phase Velocity Information of Love Waves (러브파의 위상속도 분산정보에 관한 해석적 연구)

  • 이일화
    • Journal of the Korean Society for Railway
    • /
    • 제7권4호
    • /
    • pp.391-399
    • /
    • 2004
  • This paper investigated the dispersion characteristics of horizontal surface waves as means to apply conversional SASW techniques. To verify this proposal, 3D finite element analysis and Transfer matrix solution were performed. SH wave(Love waves) has the some advantages in comparison with Rayleigh wave. Representatively, Love wave has a characteristics not affected by compression wave. These characteristics have the robust applicability for the surface wave investigation techniques. In this study, for the purpose of employing Love wave in the SASW method, the dispersion characteristics of the Love wave was extensively investigated by the theoretical and numerical approaches. The 3-D finite element and transfer matrix analyses for the half space and two-layer systems were performed to determine the phase velocities from Love wave as well as from both the vertical and the horizontal components of Rayleigh wave. Preliminary, numerical simulations and theoretical solutions indicated that the dispersion characteristics of horizontal surface wave(Love waves) can be sufficiently sensitive and appliable to SASW techniques.

Near-elliptic Core Triangular-lattice and Square-lattice PCFs: A Comparison of Birefringence, Cut-off and GVD Characteristics Towards Fiber Device Application

  • Maji, Partha Sona;Chaudhuri, Partha Roy
    • Journal of the Optical Society of Korea
    • /
    • 제18권3호
    • /
    • pp.207-216
    • /
    • 2014
  • In this work, we report detailed numerical analysis of the near-elliptic core index-guiding triangular-lattice and square-lattice photonic crystal fiber (PCFs); where we numerically characterize the birefringence, single mode, cut-off behavior and group velocity dispersion and effective area properties. By varying geometry and examining the modal field profile we find that for the same relative values of $d/{\Lambda}$, triangular-lattice PCFs show higher birefringence whereas the square-lattice PCFs show a wider range of single-mode operation. Square-lattice PCF was found to be endlessly single-mode for higher air-filling fraction ($d/{\Lambda}$). Dispersion comparison between the two structures reveal that we need smaller lengths of triangular-lattice PCF for dispersion compensation whereas PCFs with square-lattice with nearer relative dispersion slope (RDS) can better compensate the broadband dispersion. Square-lattice PCFs show zero dispersion wavelength (ZDW) red-shifted, making it preferable for mid-IR supercontinuum generation (SCG) with highly non-linear chalcogenide material. Square-lattice PCFs show higher dispersion slope that leads to compression of the broadband, thus accumulating more power in the pulse. On the other hand, triangular-lattice PCF with flat dispersion profile can generate broader SCG. Square-lattice PCF with low Group Velocity Dispersion (GVD) at the anomalous dispersion corresponds to higher dispersion length ($L_D$) and higher degree of solitonic interaction. The effective area of square-lattice PCF is always greater than its triangular-lattice counterpart making it better suited for high power applications. We have also performed a comparison of the dispersion properties of between the symmetric-core and asymmetric-core triangular-lattice PCF. While we need smaller length of symmetric-core PCF for dispersion compensation, broadband dispersion compensation can be performed with asymmetric-core PCF. Mid-Infrared (IR) SCG can be better performed with asymmetric core PCF with compressed and high power pulse, while wider range of SCG can be performed with symmetric core PCF. Thus, this study will be extremely useful for designing/realizing fiber towards a custom application around these characteristics.

Optical Transmission Link with Dispersion Management near-by Midway Optical Phase Conjugator (Midway 광 위상 공액기 근처에서 분산 제어를 수행하는 광전송 링크)

  • Lee, Seong-Real
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 한국정보통신학회 2018년도 춘계학술대회
    • /
    • pp.633-635
    • /
    • 2018
  • The compensation characteristics of the distorted WDM channels compensated for by dispersion management (DM) and optical phase conjugation in the long-haul (50 fiber spans ${\times}$ 80 km) transmission link with the randomly distributed single mode fiber (SMF) length and residual dispersion per spans (RDPS) are investigated as a function of the arrangement of SMF and dispersion compensating fiber (DCF) and the control position of net residual dispersion (NRD).

  • PDF

Eulerian-Lagrangian Modeling of One-Dimensional Dispersion Equation in Nonuniform Flow (부등류조건에서 종확산방정식의 Eulerian-Lagrangian 모형)

  • 김대근;서일원
    • Journal of Environmental Science International
    • /
    • 제11권9호
    • /
    • pp.907-914
    • /
    • 2002
  • Various Eulerian-Lagrangian models for the one-dimensional longitudinal dispersion equation in nonuniform flow were studied comparatively. In the models studied, the transport equation was decoupled into two component parts by the operator-splitting approach; one part is governing advection and the other is governing dispersion. The advection equation has been solved by using the method of characteristics following fluid particles along the characteristic line and the results were interpolated onto an Eulerian grid on which the dispersion equation was solved by Crank-Nicholson type finite difference method. In the solution of the advection equation, Lagrange fifth, cubic spline, Hermite third and fifth interpolating polynomials were tested by numerical experiment and theoretical error analysis. Among these, Hermite interpolating polynomials are generally superior to Lagrange and cubic spline interpolating polynomials in reducing both dissipation and dispersion errors.

Proposal and Analysis of Wavelength-Switchable Optical Fiber Filter Based on a Solc Type

  • Kim, Min-Wook;Jung, Jae-Hoon
    • Journal of the Optical Society of Korea
    • /
    • 제12권3호
    • /
    • pp.147-151
    • /
    • 2008
  • This paper proposes a new polarization-independent Sagnac birefringence loop structure-based multiwavelength-periodic filter and presents measurements and analysis of its spectrum. The filter can be used in several schemes by adjusting the orientation angles of two quarter waveplates and the operating characteristics in the reflection type are analyzed including dispersion and polarization mode dispersion at each principal axis. This filter has polarization-independent spectra but a polarization-dependent dispersion, consequently polarization mode dispersion whose values changes with operating schemes.

Compensation Characteristics of WDM Signals Depending on Dispersion Coefficient of Dispersion Compensating Fiber and Residual Dispersion Per Span (분산 보상 광섬유의 분산 계수와 중계 구간 당 잉여 분산에 따른 WDM 신호의 보상 특성)

  • Lee, Seong-Real
    • Journal of Advanced Navigation Technology
    • /
    • 제17권1호
    • /
    • pp.16-23
    • /
    • 2013
  • The effects of dispersion coefficient of dispersion compensating fiber (DCF) and residual dispersion per span (RDPS) on in the dispersion managed optical links for compensating the distorted 960 Gbps wavelength division multiplexd (WDM) signals due to group velocity dispersion (GVD) and optical nonlinear effects of single mode fiber (SMF) are investigated. It is confirmed that optimal net residual dispersion (NRD), which greatly affects compensating for optical signals, should be induced under the large launch power condition, irrelevant on the considered dispersion coefficient of DCF and RDPS. It is also confirmed that system performances are greatly improved by selecting the very small RDPS and very large dispersion coefficient of DCF.