• Title/Summary/Keyword: Dispersion Agent

Search Result 206, Processing Time 0.03 seconds

Development of a Natural Surfactant from Extracts of Platycodon Grandiflorum (도라지 추출물로부터 천연계면활성제의 개발)

  • Kim, Hee Jin;Park, Suk Kyong;Kim, Bo Young;Hong, Seul-Ki;Cho, Sung Ki;Kim, Donguk
    • Korean Chemical Engineering Research
    • /
    • v.46 no.2
    • /
    • pp.227-232
    • /
    • 2008
  • In this research, organic extracts from roots of platycodon grandiflorum was tested to see the possibility for cosmetic natural surfactant. Interfacial properties of extracts of Platycodon grandiflorum was checked for interfacial tension, forming force, dispersion force, emulsion force, emulsion activity, and emulsion stability. At 0.005 wt% concentration, the interfacial tension against the caster oil was 11.5 dyn/cm which was lower than that of Tween 40 and quillaja bark. Extracts of Platycodon grandiflorum showed excellent emulsification activity and stability for cosmetic oils such as olive oil, soybean oil, and canola oil. In patch test using 2-5% of the extract and glycerin, the extract showed mild skin irritation. From the experiment, the extracts of platycodon grandiflorum root showed good interfacial properties as a cosmetic agent with minor skin irritation.

Effect of $ M_2O_3$ on the Sinterbility and Electrical Conductivity of $ZrO_2(Y_2O_3)$ System(II) : Ceramics of the $ZrO_2(Y_2O_3)$-$Sb_2O_3)$ System ($ZrO_2(Y_2O_3)$계 세라믹스의 소결성과 전기전도도에 대한 $ M_2O_3$의 영향 (II): $ZrO_2-Y_2O_3-Sb_2O_3$계 세라믹스)

  • 오영재;정형진;이희수
    • Journal of the Korean Ceramic Society
    • /
    • v.23 no.6
    • /
    • pp.37-44
    • /
    • 1986
  • Yttria-antimonia-stabilized zirconia was investigated with respect to the amount of $Sb_2O_3$ addition in the range of 0.5~5mole% to the base composition of $(ZrO)_{0.92}(Y_2O_3)_{0.08}$ The sinterbility modulus of rupture Vickers hardness evaporation of components phase form-tion and mcicrostructure were evaluated with antimonia content. Also two probe A. C conductivity measurement was subjected to all specimens and the best results are achieved with 1mol% $Sb_2O_3$ as a sinter agent and relative density of~98% obtained at 140$0^{\circ}C$ and this composition has a maximum electrical conductivity due to the possible substition of $Sb^{3+}$ for $Zr^{4+}$ site. The effect of $Sb_2O_3$ on the electrical conductivity of th bulk and the grain boundaries has on investigated using frequency dispersion analysis (5~106 Hz) Antimonia addition has a negative in-fluence on both the bulk and the grain boundary conductivity except for a 1 mon% addition. The additive antimonia has improve a modulus of rupture to 60~MPa due to metastable-tetragonal phase apparence and decrease the hardness with increasing the $Sb_2O_3$ content.

  • PDF

Inorganic Printable Materials for Thin-Film Transistors: Conductor and Semiconductor

  • Jeong, Sun-Ho;Song, Hae-Chon;Lee, Byung-Seok;Lee, Ji-Yoon;Choi, Young-Min;Ryu, Beyong-Hwan
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2010.05a
    • /
    • pp.18.2-18.2
    • /
    • 2010
  • For the past a few years, we have intensively researched the printable inorganic conductors and ZnO-based amorphous oxide semiconductors (AOSs) for thin-film transistors. For printable conductor materials, we have focused on the aqueous Ag and Cu ink which possess a variety of advantages, comparing with the conventional metal inks based on organic solvent system. The aqueous Ag ink was designed to achieve the long-term dispersion stability using a specific polymer which can act as a dispersant and capping agent, and the aqueous Cu ink was carefully formulated to endow the oxidation stability in air and even aqueous solvent system. The both inks were successfully printed onto either polymer or glass substrate, exhibiting the superior conductivity comparable to that of bulk one. For printable ZnO-based AOSs, we have researched the noble way to resolve the critical problem, a high processing-temperature above $400^{\circ}C$, and recently discovered that Ga doping in ZnO-based AOSs promotes the formation of oxide lattice structures with oxygen vacancies at low annealing-temperatures, which is essential for acceptable thin-film transistor performance. The mobility dependence on annealing temperature and AOS composition was analyzed, and the chemical role of Ga are clarified, as are requirements for solution-processed, low-temperature annealed AOSs.

  • PDF

Synthesis and Characteristics of PU Oil-Gelling Agents According to the Soft Segment Content (Soft Segment 조성에 따른 PU 유겔화제의 합성 및 특성)

  • Lee, Yong-Hun;Kim, Wook;Kim, Won-Ho
    • Polymer(Korea)
    • /
    • v.24 no.6
    • /
    • pp.744-750
    • /
    • 2000
  • Oil gelling agent was synthesized with PPG, PTMG and TDI at 7$0^{\circ}C$ for 4hours. PPGs and PTMGs having various average molecular weights (M$_{n}$: 1000, 2000, 3000) were employed to investigate the ratio of oil gelation and water gelation. As M$_{n}$ of PPG, in result, was decreased from 3000 to 1000, the ratio of oil gelation was increased from 130% to 290% for PPG and from 250% to 310% for PTMG. Ratio of oil gelation was increased approximately two times when EG was added. As the amount of hydrophilic compound in the prepolymer was increased, ratio of oil gelation was increased from 290% to 1120% for PPG and increased from 310% to 1310% for PTMG, due to the increased dispersion of prepolymer in the water/oil mixture.ure.

  • PDF

Numerical Study on the Injector Shape and Location of Urea-SCR System of Heavy-duty Diesel Engine for Preventing $NH_3$ Slip (대형 디젤엔진용 SCR 시스템의 암모니아 슬립 억제를 위한 인젝터의 형상 및 위치에 관한 수치적 연구)

  • Jeong Soo-Jin;Lee Sang Jin;Kim Woo-Seung;Lee Chun Beom
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.1
    • /
    • pp.68-78
    • /
    • 2006
  • In the past few years, considerable efforts have been directed towards the further development of Urea-SCR(selective catalytic reduction) technique for diesel-driven vehicle. Although urea possesses considerable advantages over Ammonia$(NH_3)$ in terms of toxicity and handling, its necessary decomposition into Ammonia and carbon dioxide complicates the DeNOx process. Moreover, a mobile SCR system has only a short distance between engine exhaust and the catalyst entrance. Hence, this leads to not enough residence times of urea, and therefore evaporation and thermolysis cannot be completed at the catalyst entrance. This may cause high secondary emissions of Ammonia and isocyanic acid from the reducing agent and also leads to the fact that a considerable section of the catalyst may be misused for the purely thermal steps of water evaporation and thermolysis of urea. Hence the key factor to implementation of SCR technology on automobile is fast thermolysis, good mixing of Ammonia and gas, and reducing Ammonia slip. In this context, this study performs three-dimensional numerical simulation of urea injection of heavy-duty diesel engine under various injection pressure, injector locations and number of injector hole. This study employs Eulerian-Lagrangian approach to consider break-up, evaporation and heat and mass-transfer between droplet and exhaust gas with considering thermolysis and the turbulence dispersion effect of droplet. The SCR-monolith brick has been treated as porous medium. The effect of location and number of hole of urea injector on the uniformity of Ammonia concentration distribution and the amount of water at the entrance of SCR-monolith has been examined in detail under various injection pressures. The present results show useful guidelines for the optimum design of urea injector for reducing Ammonia slip and improving DeNOx performance.

Filler-Elastomer Interactions 5. Effect of Silane Surface Treatment on Interfacial Adhesion of Silica/Rubber Composites (충전재-탄성체 상호작용 5. 실란 표면처리가 실리카/고무 복합재료의 계면 특성에 미치는 영향)

  • 박수진;조기숙
    • Polymer(Korea)
    • /
    • v.26 no.4
    • /
    • pp.445-451
    • /
    • 2002
  • In this work, the adsorption characteristics and mechanical interfacial properties of treated silicas by silane coupling agents, such as, ${\gamma}$-methacryloxy propyl trimethoxy silane (MPS), ${\gamma}$-glycidoxy propyl trimethoxy silane (GPS), and ${\gamma}$-mercapto propyl trimethoxy silane (MCPS), were investigated. The equilibrium spreading pressure ($pi_e$), surface free energy ($gamma_s$ s/), and specific surface area ($S_{BET}$) were studied by the BET method with $N_2$/77 K adsorption. The developments of nonpolar functional groups of the silica surfaces treated by silane coupling agents led to the increase in the $S_{BET}$, $pi_e$, and $gamma_s$, resulting in the improved tearing energy ($G_{mc}$)of the silica/rubber composites. The composites treated by MPS showed the superior mechanical interfacial properties in these systems. These results explained by changing of crystalline size, dispersion, agglomerate, and surface functional group of silica/rubber composites.

Effect of SOx on HC-SCR Kinetics over Ag/Al2O3 Catalyst (SOx 함유 HC-SCR에서 산처리 Ag/Al2O3 촉매의 반응 특성)

  • Lee, Ju-Heon;Park, Jeong-Whan;Kim, Seong-Soo;Yoo, Seung-Joon;Kim, Jin-Gul
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.22 no.5
    • /
    • pp.714-720
    • /
    • 2011
  • Ethanol was used as reducing agent to remove $NO_x$ exhaust from the stationary source. Pre-treatment with sulfuric acid over $Ag/Al_2O_3$ catalyst was dedicated to overcome the $SO_2$ poisoning effect. The $NO_x$ reduction experiment was performed under the simulated condition of power plant The increased surface area with higher CPSI devoted to increase de-$NO_x$ yield. De-$NO_x$ yield of the $NO_x$ exhaust containing 20 ppm of $SO_2$ increased after acid treatment with 0.7% $H_2SO_4$ over 4.0% $Ag/Al_2O_3$, where the increased dispersion of Ag found from the results of XRD and XPS was the dominant factor for the increased de-$NO_x$ yield. However, the reason for the decreased de-$NO_x$ yield with the acid treatment of higher concentration (1.0% and 2.0%) of $H_2SO_4$ was found to be due to the formation of $Ag_2SO_4$ crystallites found from XRD result. Acid-treated $Ag/Al_2O_3$ catalyst showed maximum de-$NO_x$ yield at higher temperature than non-treated $Ag/Al_2O_3$ catalyst did.

Preparation and Adhesion Characteristics of Binary Blended Waterborne Polyurethane (이성분계 혼합 폴리우레탄 수분산체의 제조 및 접착 특성 연구)

  • Kim, Eun Ji;Park, In Kyu;Park, Jae Hyung
    • Journal of Adhesion and Interface
    • /
    • v.19 no.1
    • /
    • pp.5-12
    • /
    • 2018
  • The purpose of this study is to evaluate the adhesive properties of polyurethane mixed aqueous dispersions by omitting the primer, dealing with the preparation of skins for synthetic leather with excellent adhesion by omitting the pre-treatment process. The two-component mixed polyurethane water dispersion was prepared by synthesizing an ester-based polyurethane resin (PU-T) and a carbonate-based polyurethane resin (PU-C) to obtain the final resin. As a result of measuring the peel strength of the adhesive specimens omitting the pre-treatment agent, it was confirmed that the state adhesive strength (ethylene vinyl acetate (middle): $4.2kg_f/cm$ and rubber (outsole): $4.4kg_f/cm$) there was. This makes it possible to omit the pre-treatment process which has been indispensably used in the shoe manufacturing process, thereby reducing the process time and reducing the amount of volatile organic compounds (VOCs) generated in the pre-treatment product, resulting in environmentally advantageous.

Comparison on Mechanical Properties of SSBR Composites Reinforced by Modified Carbon black, Silica, and Starch

  • Lee, Dam-Hee;Li, Xiang Xu;Cho, Ur-Ryong
    • Elastomers and Composites
    • /
    • v.53 no.3
    • /
    • pp.175-180
    • /
    • 2018
  • Solution-styrene-butadiene rubber (SSBR) composites were manufactured using four kinds of fillers: silica-silane coated carbon black (SC-CB) hybrid, starch-SC-CB hybrid, pure silica, and pure starch. The influence of filler type on the mechanical properties of the rubber matrix was studied in this work. SC-CB was prepared by silane-graft-coating using vinyl triethoxy silane and carbon black, which enhanced the dispersion effect between the rubber matrix and the filler, and improved the mechanical properties of the compounds. The morphology of the composites was observed by field-emission scanning electron microscopy (FE-SEM). The thermal decomposition behavior of the composites was determined by thermogravimetric analysis (TGA), and the crosslinking behavior of the composites was tested using a rubber process analyzer (RPA). The hardness, tensile strength, swelling ratio, and gas transmittance rate of the composites were evaluated according to ASTM. The test results revealed that with the addition of SC-CB, the hybrid fillers, especially those blended with silica, showed a better reinforcement effect, the highest hardness and tensile strength, and stable thermal decomposition behavior. This implies that the silica-SC-CB hybrid filler has a notable mechanical reinforcement effect on the SSBR matrix. Because of self-crosslinking during its synthesis, the starch-SC-CB hybrid filler produced the most dense matrix, which improved the anti-gas transmittance property. The composites with the hybrid fillers had better anti-swelling properties as compared to the neat SSBR composite, which was due to the hydrophilicity of silica and starch.

Interfacial Phenomena of Lignocellulose Fiber/Thermoplastic Polymer Composites (리그노셀룰로오스 섬유/열가소성 고분자 복합재의 계면 현상)

  • Son, Jungil;Yang, Han-Seung;Kim, Hyun-Joong
    • Journal of Adhesion and Interface
    • /
    • v.3 no.4
    • /
    • pp.44-52
    • /
    • 2002
  • Composite materials are created by combining two or more component to achieve desired properties which could not be obtained with the separate components. The use of reinforcing fillers, which can reduce material costs and improve certain properties, is increasing in thermoplastic polymer composites. Currently, various inorganic fillers such as talc, mica, clay, glass fiber and calcium carbonate are being incorporated into thermoplastic composites. Nevertheless, lignocellulose fibers have drawn attention due to their abundant availability, low cost and renewable nature. In recent, interest has grown in composites made from lignocellulose fiber in thermoplastic polymer matrices, particularly for low cost/high volume applications. In addition to high specific properties, lignocellulose fibers offer a number of benefits for lignocellulose fiber/thermoplastic polymer composites. These include low hardness, which minimize abrasion of the equipment during processing, relatively low density, biodegradability, and low cost on a unit-volume basis. In spite of the advantage mentioned above, the use of lignocellulose fibers in thermoplastic polymer composites has been plagued by difficulties in obtaining good dispersion and strong interfacial adhesion because lignocellulose fiber is hydrophilic and thermoplastic polymer is hydrophobic. The application of lignocellulose fibers as reinforcements in composite materials requires, just as for glass-fiber reinforced composites, a strong adhesion between the fiber and the matrix regardless of whether a traditional polymer matrix, a biodegradable polymer matrix or cement is used. Further this article gives a survey about physical and chemical treatment methods which improve the fiber matrix adhesion, their results and effects on the physical properties of composites. Coupling agents in lignocellulose fiber and polymer composites play a very important role in improving the compatibility and adhesion between polar lignocellulose fiber and non-polar polymeric matrices. In this article, we also review various kinds of coupling agent and interfacial mechanism or phenomena between lignocellulose fiber and thermoplastic polymer.

  • PDF