• 제목/요약/키워드: Dispersed flow

검색결과 207건 처리시간 0.023초

미립잠열슬러리의 유체역학적 특성연구 (Fluid dynamical characteristics of microencapsulated phase change material slurries)

  • 이효진;이승우;이재구
    • 설비공학논문집
    • /
    • 제11권4호
    • /
    • pp.549-559
    • /
    • 1999
  • An experimental study was peformed to measure the viscosity of microencapsulated PCM slurries as the functions of its concentration and temperature, and also influence to its fluid dynamics. For the viscosity measurement, a rotary type viscometer, which was equipped with temperature control system, was adopted. The slurry was mixed with water and Sodium Lauryl Sulphate as a surfactant by which its suspended particles were dispersed well without the segregation of particles during the experiment. The viscosity was increased as the concentration of MicroPCM particle added. The surfactant increased 5% of the viscosity over the working fluid without particles. Experiments were proceeded by changing parameters such as PCM particles'concentration as well as the temperature of working fluid. As a result, a model to the functions of temperature for the working fluid and its particle concentration is proposed. The proposed model, for which its standard deviation shows 0.8068, is agreed well with the reference's data. The pressure drop was measured by U-tube manometer, and then the friction factor was obtained. It was noted that the pressure drop was not influenced by the state of PCM phase, that is solid or liquid in its core materials at their same concentration. On the other hand, it was described that the pressure drop of the slurry was much increased over the working fluid without particles. A friction factor was placed on a straight line in all working fluids of the laminar flow regardless of existing particles as we expected.

  • PDF

멜트블론 부직포 제조를 위한 PLA/PCL 블렌드의 미세구조, 열적특성, 및 유변학적 성질 (Microstructure, Thermal Properties and Rheological Behavior of PLA/PCL Blends for Melt-blown Nonwovens)

  • Sun, Hui;Yu, Bin;Han, Jan;Kong, Jinjin;Meng, Lingrui;Zhu, Feichao
    • 폴리머
    • /
    • 제38권4호
    • /
    • pp.477-483
    • /
    • 2014
  • Poly(lactic acid) (PLA) and poly(${\varepsilon}$-caprolactone) (PCL) blends with various components for melt-blown non-wovens were prepared by a twin-screw extruder. Tributyl citrate (TBC) was added in order to improve the miscibility between PLA and PCL. The results showed that small circular particles of PCL were dispersed in PLA matrix uniformly. The addition of PCL had the heterogeneous nucleation effect on the crystallization of PLA and decreased thermal stability of PLA. The flow of pure PLA and blends approached to Newtonian liquid at a low shear rate and expressed more obvious viscoelasticity at a high shear rate.

미세기포 발생펌프 내 체류시간에 따른 미세기포의 발생 농도 예측 (Prediction of Micro-Bubble Releasing Concentration with the Retention Time of a Micro-Bubble Generating Pump)

  • 매튜스탠리암브로샤;이창한
    • 한국환경과학회지
    • /
    • 제25권6호
    • /
    • pp.829-837
    • /
    • 2016
  • The mechanism of micro-bubble generation with a pump is not clarified yet, so the design of water treatment systems with a micro-bubble generating pump is based on trial and error methods. This study tried to explain clearly quantitative relationships of experimental micro-bubble concentration ($C_{air}$) of continuous operation tests with a micro-bubble generating pump and theoretical air solubility. Operation parameters for the tests were discharge pressure ($P_g$), water ($Q_{w0}$) and air ($q_0$) flow rates, orifice diameter ($D_o$), and retention time (t). The experimental micro-bubble concentrations ($C_{air}$) at 4.8 atm of discharge pressure ($P_g$) were in the range of 21.04 to 25.29 mL/L. When the retention time (t) by changing the pipe line length ($L_p$) increased from 1.22 to 6.77s, the experimental micro-bubble concentrations ($C_{air}$) increased from 25.86 to 30.78 mL air/L water linearly. The dissolved and dispersed micro-bubble concentrations ($C_{air}$) are approximately 4 times more than the theoretical air solubility.

기저 형상에 따른 PIFS 및 열전달 비교 연구 (THE COMPARISON OF PIFS AND HEAT TRANSFER WITH BASE CONFIGURATIONS)

  • 김재관;이준우;김규홍
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2010년 춘계학술대회논문집
    • /
    • pp.195-200
    • /
    • 2010
  • Numerical investigation was conducted to study the effects of after-body configurations and nozzle lip on the PIFS(Plume Induced Flow Separation) and eat flux to the base face. Two dimensional and axi-symmetric non-equilibrium Navier-Stoke's solver with $k-{\omega}$ SST turbulence model was used to solve the launching vehicle type configuration with propulsive jet. The experimental result of Robert J. McGhee was compared with our computational results for code validation. Three types of the after-body configurations (Straight, Boat-tail, Flare type) were simulated for this study. And the nozzle lip effect was studies using the three types of base configurations same simulation conditions. As a result of numerical investigations, higher pressure ratio condition and boat-tail after-body configuration caused severe PIFS phenomenon but the flare type after-body configuration and low pressure ratio suppressed PIFS. Flare type after-body configuration and low pressure ratio case reduced heat flux to base face. The nozzle lip dispersed the heat flux widely along the base face and the nozzle lip.

  • PDF

Gas Fuelled Ship FGS 시스템에 대한 가스누출 조건 검토 및 CFD 해석 (Gas Leakage Condition and CFD analysis on Gas Fuelled ship FGS system)

  • 김기평;강호근;박재홍;정정호
    • 한국마린엔지니어링학회:학술대회논문집
    • /
    • 한국마린엔지니어링학회 2011년도 전기공동학술대회 논문집
    • /
    • pp.7-10
    • /
    • 2011
  • According to the requirement of Res.MSC.285(86) for natural gas-fueled engine installations in ships, pump and compressor rooms should be fitted with effective mechanical ventilation system of the under pressure type, providing a ventilation capacity of at least 30 air changes per hour. It generally considered that gas leakage is more likely from a Fueled Gas Supply System(FGS) room as compared to other places, where installed in many kind of machinery or equipments like gas supply high-pressure pipes, valves, flanges and etc. Furthermore, leaked gas may be dispersed in a short time in an enclosed space, especially a FGS room, due to high pressure. However, the present requirement in Res.MSC.285(86) just considers the ventilating capacity of air changes per hour but the capacity of leaked gas. Hence, the current requirements may not meet effectively when enforcing the new propulsion systems as marine fuel. This study is conducted for the purpose of safety evaluation about the dispersion and ventilation efficiency with estimated leakage scenario. Numerical analysis predictions as the result of this paper are explained to know the features of flow pattern and the diffusion of natural gas concentration.

  • PDF

Performance of a Direct Contact Heat Exchanger with Meshes for a Solar Thermal Energy System

  • Kim, Chong-Bo;Kim, Nam-Jin;Seo, Tae-Beom;Hur, Byung-Ki
    • Journal of Mechanical Science and Technology
    • /
    • 제15권2호
    • /
    • pp.268-276
    • /
    • 2001
  • In order to improve the efficiency of a direct contact heat exchanger for a solar thermal energy system, the working fluid should be dispersed into small and uniform droplets, and stay within a heat exchanger for a long time. Therefore, installation of meshes in a direct contact heat exchanger is suggested in the present study, and the performance of the direct contact heat exchanger with several layers of meshes is experimentally investigated. Diethyl phthalate is used as the working fluid, and the performance of the heat exchanger is tested for several different operating conditions and compared to that of the heat exchanger without meshes. The results of this investigation show that meshes make droplets uniform and small when the flow rate is low. The relationship between the Peclet number and the Nusselt number becomes linear if it is steady. And, the Nusselt number for the direct contact heat exchanger with meshes becomes greater than that without meshes as the Peclet number increases.

  • PDF

Selective catalytic reduction of NO by hydrocarbons over $Cu/Al_2O_3$ catalysts

  • Nam, Chang-Mo;Bernard M. Gibbs
    • Environmental Sciences Bulletin of The Korean Environmental Sciences Society
    • /
    • 제4권4호
    • /
    • pp.201-208
    • /
    • 2000
  • The reduction of NO by hydrocarbons was investigated over Cu/Al$_2$O$_3$catalysts using a stainless steel flow reactor under highly oxidising diesel exhaust conditions(up to 15%). Three different Cu loadings(1,5 and 10wt.%) on an $Al_2$O$_3$support were prepared and characterized using spectroscopic techniques. The catalytic activity tests show that different Cu loadings as well as temperature, oxygen, and hydrocarbon concentration levels significantly influence the NO reduction. Increasing Cu loadings up to 5 and 10wt.% decreases the catalytic activities for NO reduction due to the formation of a bulk crystalline CuO phase, as observed from XRD and SEM images. In particular, the visualization of the copper dispersion on the surface using the SEM-BEI technique provides information on the extent of copper saturation, particle size, and the effects on NO reduction. However, the lower Cu loading(1 wt.%) increases the catalytic activity with a temperature window of 720-810K, thereby favoring the formation of well dispersed isolated Cu species, e.g. Cu(sup)2+ ions, which is related to selective NO reduction. The effects of other reaction parameters, such as oxygen, the hydrocarbon level and type, and byproduct emissions are further discussed.

  • PDF

Novel high performanced and fouling resistant PSf/ZnO membranes for water treatment

  • Sarihan, Adem;Eren, Erdal
    • Membrane and Water Treatment
    • /
    • 제8권6호
    • /
    • pp.563-574
    • /
    • 2017
  • Antibacterial effective, high performanced, novel ZnO embedded composite membranes were obtained by blendig ZnO nanoparticles with polysulfone. IR, TG/DTG, XRD and SEM analysis were performed to characterize structure and morphology of ZnO nanoparticles and composite membranes. Contact angle, EWC, porosity and pore structure properties of composite membranes were investigated. Cross-flow filtration studies were performed to investigation of performances of prepared membranes. It was found from the cross section SEM images that ZnO nanoparticles dispersed homogenously up to additive amount of 2% and the membrane skin layer thicknesses increased in the presence of ZnO. Contact angle of pure PSf membranes were reduced from $70^{\circ}$ to $55^{\circ}$ after addition of 4% ZnO. Porosity of composite membrane contains 1% ZnO was higher about 22% than pure PSf membrane. BSA rejection ratio and PWF of 0.5% ZnO embedded composite membrane became 2.2 and 2.3 times higher than pure PSf membrane. It was determined from flux recovery ratios that ZnO additive increased the fouling resistance of composite membranes. Also, the bacterial killing ability of ZnO is well known and there are many researches related to this in the literature. Therefore, it is expected that prepared composite membranes will show antibacterial effect.

3%C-10%Cr-5%Mo-5%W 백주철에 있어서 열처리가 현미경조직, 경도 및 내마모성에 미치는 영향 (Effects of Heat Treatments on Microstructure , Hardness and Abrasive Wear Resistance in 3%C-10%Cr-5%Mo-5%W White Cast Iron)

  • 류성곤
    • 한국주조공학회지
    • /
    • 제19권1호
    • /
    • pp.33-37
    • /
    • 1999
  • White cast iron of 3%C-10%Cr-5%Mo-5%W was casted, and then heat treated with three different methods such as homogenizing, austenitizing and tempering to observe its effects on the microstructure, hardness and abrasive wear resistance. In uni-directional soldification, bamboo tree-like $M_7C_3$ carbide grew along with the heat flow direction, and fishbone-like $M_6C$ carbide was dispersed randomly among $M_7C_3$ carbides. While almost pearlitic structures were observed in the as-cast specimen, those of the heat treated specimens consisted of secondary carbide, retained austenite and tempered martensite. In austenitized specimen, the amounts of retained austenite were 60.88% due to the higher cooling rate encountered in forced air cooling. On the other hand, the amounts of retained austenite were reduced from 60.88% to 23.85% in tempered specimen due to the transformation of austenite into tempered martensite. The hardness of tempered specimen showed the highest value, and then decreased in the order of austenitized, as-cast and homogenized specimens. But, the abrasive wear resistance of austenitized specimen was the highest, and then decreased in the order of tempered, as-cast and homogenized specimens.

  • PDF

Valve actuation effects on discrete monopropellant slug delivery in a micro-scale fuel injection system

  • McDevitt, M. Ryan;Hitt, Darren L.
    • Advances in aircraft and spacecraft science
    • /
    • 제1권4호
    • /
    • pp.409-425
    • /
    • 2014
  • Converging flows of a gas and a liquid at a microchannel cross junction, under proper conditions, can result in the formation of periodic, dispersed microslugs. This microslug formation phenomenon has been proposed as the basis for a fuel injection system in a novel, 'discrete' monopropellant microthruster designed for use in next-generation miniaturized satellites. Previous experimental studies demonstrated the ability to generate fuel slugs with characteristics commensurate with the intended application during steady-state operation. In this work, numerical and experimental techniques are used to study the effect of valve actuation on slug characteristics, and the results are used to compare with equivalent steady-state slugs. Computational simulations of a valve with a 1 ms valve-actuation cycle show that as the ratio of the response time of the valve to the fully open time is increased, transient effects can increase slug length by up to 17%. The simulations also demonstrate that the effect of the valve is largely independent of surface tension coefficient, which is the thermophysical parameter most responsible for slug formation characteristics. Flow visualization experiments performed using a miniature valve with a 20 ms response time showed less than a 1% change in the length of slugs formed during the actuation cycle. The results of this study indicate that impulse bit and thrust calculations can discount transient effects for slower valves, but as valve technology improves transient effects may become more significant.