• 제목/요약/키워드: Dispersed Fluid

검색결과 124건 처리시간 0.031초

순수 물과 에탄올 산화 탄소나노유체의 열전도도 및 점도 특성 비교 연구 (A Comparative Study on the Thermal Conductivities and Viscosities of the Pure Water and Ethanol Carbon Nanofluids)

  • 안응진;박성식;천원기;박윤철;전용한;김남진
    • 한국태양에너지학회 논문집
    • /
    • 제32권spc3호
    • /
    • pp.213-219
    • /
    • 2012
  • Nanofluids are advanced concept fluid that solid particles of nanometer size are stably dispersed in fluid likes water, ethylene glycol and others. They have higher thermal conductivities than base fluids. If using this characteristic, efficiencies of heat exchangers can be increased. Therefore in this study, we measured thermal conductivity and viscosity of carbon nanofluids. They were made to ultra sonic dispersed oxidized multi-walled carbon nanotubes(OMWCNTs) in distilled water and ethanol, respectively. The mixture ratios of OMWCNTs were from 0.0005 vol% ~ 0.1 vol%. Thermal conductivity and viscosity was measured by transient hot-wire method and rotational viscometer. The results of an experiment are as in the following: thermal conductivity of the 0.1 vol% pure-water nanofluid improved 7.98% ($10^{\circ}C$), 8.34% ($25^{\circ}C$), and 9.14% ($70^{\circ}C$), and its viscosity increased by 37.08% ($10^{\circ}C$), 33.96% ($25^{\circ}C$) and 21.64% ($70^{\circ}C$) than the base fluids. Thermal conductivity of the 0.1 vol% ethanol nanofluids improved 33.72% ($10^{\circ}C$), 33.14% ($25^{\circ}C$), and 32.25% ($70^{\circ}C$), and its viscosity increased by 35.12% ($10^{\circ}C$), 32.01% ($25^{\circ}C$) and 19.12% ($70^{\circ}C$) than the base fluids.

전산유체역학을 이용한 아폴로 달착륙선 하강엔진의 플룸 거동 연구 (Plume Behavior Study of Apollo Lunar Module Descent Engine Using Computational Fluid Dynamics)

  • 최욱;이균호;명노신
    • 한국항공우주학회지
    • /
    • 제45권9호
    • /
    • pp.766-774
    • /
    • 2017
  • 달착륙선 하강엔진에서 사출된 배기가스가 월면과 충돌할 때 배기가스와 월면과의 상호작용으로 인해 월면에 분포되어 있는 표토가 분산된다. 이때, 분산된 표토입자가 착륙선과 충돌할 경우 성능 저하 등과 같은 역효과를 야기할 수 있다. 따라서 본 연구에서는 달착륙 엔진의 배기가스 거동을 전산유체해석을 통해 예측하고자 하였다. 하강엔진의 노즐내부 영역은 Navier-Stokes 방정식 기반의 연속체 유동 모델을 이용하여 해석하였으며, 노즐 외부 배기가스 거동은 연속체 유동 모델과 직접모사법(DSMC)을 적용하여 해석한 결과를 각각 비교 및 분석하였다. 이를 통해 진공환경에서 달착륙선 하강엔진에 대한 최적의 배기가스 해석 절차를 수립할 수 있었으며, 차후 한국형 달착륙선 개발에 충분히 활용할 수 있을 것으로 기대된다.

Water-insoluble, Whey Protein-based Microcapsules for Controlled Core Release Application

  • Lee, Sung-Je
    • Journal of Dairy Science and Biotechnology
    • /
    • 제23권2호
    • /
    • pp.115-123
    • /
    • 2005
  • Microcapsules consisting of natural, biodegradable polymers for controlled and/or sustained core release applications are needed. Physicochemical properties of whey proteins suggest that they may be suitable wall materials in developing such microcapsules. The objectives of the research were to develop water-insoluble, whey protein-based microcapsules containing a model water-soluble drug using a chemical cross-linking agent, glutaraldehyde, and to investigate core release from these capsules at simulated physiological conditions. A model water soluble drug, theophylline, was suspended in whey protein isolate (WPI) solution. The suspension was dispersed in a mixture of dichloromethane and hexane containing 1% biomedical polyurethane. Protein matrices were cross-linked with 7.5-30 ml of glutaraldehyde-saturated toluene (GAST) for 1-3 hr. Microcapsules were harvested, washed, dried and analyzed for core retention, microstructure, and core release in enzyme-free simulated gastric fluid (SGF) and simulated intestinal fluid(SIF) at $37^{\circ}C$. A method consisting of double emulsification and heat gelation was also developed to prepare water-insoluble, whey protein-based microcapsules containing anhydrous milkfat (AMF) as a model apolar core. AMF was emulsified into WPI solution (15${\sim}$30%, pH 4.5-7.2) at a proportion of 25${\sim}$50%(w/w, on dry basis). The oil-in-water emulsion was then added and dispersed into corn oil ($50^{\circ}C$) to form an O/W/O double emulsion and then heated at $85^{\circ}C$ for 20 min for gelation of whey protein wall matrix. Effects of emulsion composition and pH on core retention, microstructure, and water-solubility of microcapsules were determined. Overall results suggest that whey proteins can be used in developing microcapsules for controlled and sustained core release applications.

  • PDF

세탁기 진동소음의 저감을 위한 MR 댐퍼 컨트롤 모듈 개발 (The development of MR damper control modules for a vibration and noise decrease in Washing machine system)

  • 손경민;김민;김관형;변기식
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2012년도 춘계학술대회
    • /
    • pp.185-187
    • /
    • 2012
  • 본 논문에서 응용하고자 하는 MR 유체 댐퍼는 상자성(paramagnetic) 입자를 MR 유체 내부에 분산시켜 전류에 따라 발생하는 전자석 원리를 이용하여 MR 댐퍼 내부의 유체의 항복 전달 응력의 변화 실키 수 있는 특징이 있다. 즉, 전류의 세기에 따라 MR 유체 댐퍼 내부의 마찰계수가 달라지는 현상을 이용하는 것이다. 이러한 MR 유체 댐퍼 제어에 사용하고자 하는 MCU는 마이크로칩 사의 dsPIC 칩을 이용하여 성능을 개선하고자 하며 전류제어에는 PWM을 이용하며, 외부 모니터링을 위하여 UART 통신을 이용하여 전체 시스템을 모니터링 하도록 설계하였다. 본 연구에서는 MR 유체 댐퍼와 dsPIC 칩을 사용하여 세탁기의 탈수 과정 시 발생 되는 진동 및 소음을 저감 시키도록 세탁기용 진동 및 소음방지 시스템을 제안하고자 한다.

  • PDF

전기유변유체를 동작매체로 하는 실험용 토크 전달장치 제작 및 성능평가 (Construction and Evaluation of an Experimental Type Torque Converter by Adapting an Electrorheological Fluid as an Operating Medium)

  • 김상국;정동운;최윤대
    • 대한기계학회논문집
    • /
    • 제18권10호
    • /
    • pp.2706-2711
    • /
    • 1994
  • In this work, an experimental type of torque converter has been constructed and its characteristics have been evaluated by adapting an electrorheological fluid(ERF) as an operating medium. The device was designed by using the equations which were proposed by Carlson et al. The correlation between the rheological behaviour of an ERF and mechanical parameters of the clutch has been investigated. The torque generated by an ERF in this device is sum of one due to the yield strength by polarizing dispersed particles in dielectric oil and one due to the viscous drag. The experimental results are presented in terms of torque and current density as a function of rotational speed at various electric field strength applied. Experimental results showed that the measured torque was rapidly increased with the increase of the electric field, generally being proportional to the rotational speed of the motor. The measured current was shown to be increased with the increased electric field. Also, the current was decreased with the increase of increased with the increased electric field. Also, the current was decreased with the increase of the rotational speed of the motor and reached plateau region after f = 5 Hz.

초임계 건조 및 유체법에 의해 알루미나 분말의 제조 (Preparation of Alumina Powders Using Supercritical Drying and Fluid Method)

  • 임대영;홍석형;정용진;박상준;조승범
    • 공학논문집
    • /
    • 제4권1호
    • /
    • pp.87-91
    • /
    • 2002
  • 본 연구에서는 초임계 건조 및 유체법을 사용하여 얻어진 분말을 열처리하여 나노 크기의 알루미나 분말을 제조하였다. Al-isopropoxide를 출발 물질로 사용하였고, 용매로서는 2가 알코올류인 Ethylene glycol을 사용하였다. 또한 온도 및 압력의 영향을 조사하기 위하여 임계점 이하의 조건에서도 실험도 병행하였다. Autoclave에서 초임계 건조 및 유체법으로 제조된 알루미나는 XRD, SEM 및 TG-DTA 의해 특성을 조사하였고, 열처리 결과 새로운 route로 $\alpha-A12O3$로 전이 되었다.

  • PDF

나노유체 열전도도 특성 연구 (A Study on Thermal Conductivity Characteristics of Nanofluids)

  • 황유진;박재홍;김홍석;이재근
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2006년도 하계학술발표대회 논문집
    • /
    • pp.162-167
    • /
    • 2006
  • Nanofluid is a kind of new engineering material consisting of nanoparticles dispersed in base fluid. Nanofluids could have various applications such as magnetic fluids, heat exchanger working fluids, lubricants, drug delivery and so on in present study, various nanoparticles, such as MWCNT (Multi-walled Carbon Nanotube), fullerene, copper oxide, and silicon dioxide are used to produce nanofluids. As base fluids, DI-water, ethylene glycol, oil, and silicon oil are used. To investigate the thermo-physical properties of nanofluids, thermal conductivity and kinematic viscosity are measured. Stability estimation of nanofluid is conducted with UV-vis spectrophoto-meter. In this study, the high pressure homogenizer is the most effective method to produce nanofluid with the prepared nanoparticle and base fluid. Excellently stable nanofluids are produced with the magnetron sputtering system. Thermal conductivity of nanofluid increases with increasing particle volume fraction except water-based fullerene nanofluid which has lower thermal conductivity than base fluid due to its lower thermal conductivity, 0.4 W/mK. The experimental results can't be predicted by Jang and Choi model.

  • PDF

CFD 모형을 이용한 3차원 비대칭 도로 협곡에서의 흐름 및 오염물질 분산 연구 (An Investigation of Flow and Pollutant Dispersion in Three-Dimensional Asymmetric Street Canyons Using a CFD Model)

  • 박승부;백종진
    • 한국대기환경학회지
    • /
    • 제23권2호
    • /
    • pp.214-224
    • /
    • 2007
  • A three-dimensional computational fluid dynamics (CFD) model with the renormalization group (RNG) $k-{\varepsilon}$ turbulence model is used to examine the effects of difference in building height on flow and pollutant dispersion in asymmetric street canyons. Three numerical experiments with different street canyons formed by two isolated buildings are performed. In the experiment with equal building height, a portal vortex is formed in the street canyon and a typical recirculation zone is formed behind the downwind building. In the experiment with the downwind building being higher than the upwind building, the ambient flow comes into the street canyon at the front of the downwind building and incoming flow diverges strongly in the street canyon. Hence, pollutants released therein are strongly dispersed through the lateral sides of the street canyon. In the experiment with the upwind building being higher than the downwind building, a large recirculation zone is formed behind the upwind building, which is disturbed by the downwind building. Pollutants are weakly dispersed from the street canyon and the residue concentration ratio is largest among the three experiments. This study shows that the difference in upwind and downwind building height significantly influences flow and pollutant dispersion in and around the street canyon.

DEVELOPMENT OF INTERFACIAL AREA TRANSPORT EQUATION

  • ISHII MAMORU;KIM SEUNGJIN;KELLY JOSEPH
    • Nuclear Engineering and Technology
    • /
    • 제37권6호
    • /
    • pp.525-536
    • /
    • 2005
  • The interfacial area transport equation dynamically models the changes in interfacial structures along the flow field by mechanistically modeling the creation and destruction of dispersed phase. Hence, when employed in the numerical thermal-hydraulic system analysis codes, it eliminates artificial bifurcations stemming from the use of the static flow regime transition criteria. Accounting for the substantial differences in the transport mechanism for various sizes of bubbles, the transport equation is formulated for two characteristic groups of bubbles. The group 1 equation describes the transport of small-dispersed bubbles, whereas the group 2 equation describes the transport of large cap, slug or chum-turbulent bubbles. To evaluate the feasibility and reliability of interfacial area transport equation available at present, it is benchmarked by an extensive database established in various two-phase flow configurations spanning from bubbly to chum-turbulent flow regimes. The geometrical effect in interfacial area transport is examined by the data acquired in vertical fir-water two-phase flow through round pipes of various sizes and a confined flow duct, and by those acquired In vertical co-current downward air-water two-phase flow through round pipes of two different sizes.

수분 활성 실리카 겔 분산계의 전기유변학적 특성 (Electrorheological Properties of Water Activated Silica Gel Suspensions)

  • 안병길;최웅수;권오관;문탁진
    • Tribology and Lubricants
    • /
    • 제13권3호
    • /
    • pp.115-123
    • /
    • 1997
  • The electrorheological (ER) behavior of suspensions in silicone oil of silica gel powder (average particle size 49 $\mu$m) absorbed water was investigated at room temperature with electric fields up to 2.4 KV/mm. In this paper, for development of succcessful ER fluids used for wide temperature range later, we would like to know a fundamental understanding of water on ER effect. As a first step, the ER fluids involving water activated silica gel were measured not only the electrical characteristics such as dielectric constant, current density and electrical conductivity but also the rheological properties on the strength of electric field, the quantity of dispersed phase and absorbed water. From the experimental results that water absorbed to the particles directly affects to the surface charge density of electric double layer model proposed by Schwarz and makes dielectric constant and current density of ER fluids increase. The current density and dynamic yield stress $($\tau$_y)$ of water activated silica gel suspensions was in exponential proportion to the strength of electric field, the quantity of dispersed phase and absorbed water. And the optimum water quantity and weight concentration of silica gel for electrorheological effect were 4-5 wt% and 15 wt%, respectively.