• Title/Summary/Keyword: Disparity Maps

Search Result 46, Processing Time 0.026 seconds

High-qualtiy 3-D Video Generation using Scale Space (계위 공간을 이용한 고품질 3차원 비디오 생성 방법 -다단계 계위공간 개념을 이용해 깊이맵의 경계영역을 정제하는 고화질 복합형 카메라 시스템과 고품질 3차원 스캐너를 결합하여 고품질 깊이맵을 생성하는 방법-)

  • Lee, Eun-Kyung;Jung, Young-Ki;Ho, Yo-Sung
    • 한국HCI학회:학술대회논문집
    • /
    • 2009.02a
    • /
    • pp.620-624
    • /
    • 2009
  • In this paper, we present a new camera system combining a high-quality 3-D scanner and hybrid camera system to generate a multiview video-plus-depth. In order to get the 3-D video using the hybrid camera system and 3-D scanner, we first obtain depth information for background region from the 3-D scanner. Then, we get the depth map for foreground area from the hybrid camera system. Initial depths of each view image are estimated by performing 3-D warping with the depth information. Thereafter, multiview depth estimation using the initial depths is carried out to get each view initial disparity map. We correct the initial disparity map using a belief propagation algorithm so that we can generate the high-quality multiview disparity map. Finally, we refine depths of the foreground boundary using extracted edge information. Experimental results show that the proposed depth maps generation method produces a 3-D video with more accurate multiview depths and supports more natural 3-D views than the previous works.

  • PDF

An Epipolar Rectification for Object Segmentation (객체분할을 위한 에피폴라 Rectification)

  • Jeong, Seung-Do;Kang, Sung-Suk;CHo, Jung-Won;Choi, Byung-Uk
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.1C
    • /
    • pp.83-91
    • /
    • 2004
  • An epipolar rectification is the process of transforming the epipolar geometry of a pair of images into a canonical form. This is accomplished by applying a homography to each image that maps the epipole to a predetermined point. In this process, rectified images transformed by homographies must be satisfied with the epipolar constraint. These homographies are not unique, however, we find out homographies that are suited to system's purpose by means of an additive constraint. Since the rectified image pair be a stereo image pair, we are able to find the disparity efficiently. Therefore, we are able to estimate the three-dimensional information of objects within an image and apply this information to object segmentation. This paper proposes a rectification method for object segmentation and applies the rectification result to the object segmentation. Using color and relative continuity of disparity for the object segmentation, the drawbacks of previous segmentation method, which are that the object is segmented to several region because of having different color information or another object is merged into one because of having similar color information, are complemented. Experimental result shows that the disparity of result image of proposed rectification method have continuity about unique object. Therefore we have confirmed that our rectification method is suitable to the object segmentation.

A Novel Feature Map Generation and Integration Method for Attention Based Visual Information Processing System using Disparity of a Stereo Pair of Images (주의 기반 시각정보처리체계 시스템 구현을 위한 스테레오 영상의 변위도를 이용한 새로운 특징맵 구성 및 통합 방법)

  • Park, Min-Chul;Cheoi, Kyung-Joo
    • The KIPS Transactions:PartB
    • /
    • v.17B no.1
    • /
    • pp.55-62
    • /
    • 2010
  • Human visual attention system has a remarkable ability to interpret complex scenes with the ease and simplicity by selecting or focusing on a small region of visual field without scanning the whole images. In this paper, a novel feature map generation and integration method for attention based visual information processing system is proposed. The depth information obtained from a stereo pair of images is exploited as one of spatial visual features to form a set of topographic feature maps in our approach. Comparative experiments show that correct detection rate of visual attention regions improves by utilizing depth feature compared to the case of not using depth feature.

Stereo Image Quality Assessment Using Visual Attention and Distortion Predictors

  • Hwang, Jae-Jeong;Wu, Hong Ren
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.5 no.9
    • /
    • pp.1613-1631
    • /
    • 2011
  • Several metrics have been reported in the literature to assess stereo image quality, mostly based on visual attention or human visual sensitivity based distortion prediction with the help of disparity information, which do not consider the combined aspects of human visual processing. In this paper, visual attention and depth assisted stereo image quality assessment model (VAD-SIQAM) is devised that consists of three main components, i.e., stereo attention predictor (SAP), depth variation (DV), and stereo distortion predictor (SDP). Visual attention is modeled based on entropy and inverse contrast to detect regions or objects of interest/attention. Depth variation is fused into the attention probability to account for the amount of changed depth in distorted stereo images. Finally, the stereo distortion predictor is designed by integrating distortion probability, which is based on low-level human visual system (HVS), responses into actual attention probabilities. The results show that regions of attention are detected among the visually significant distortions in the stereo image pair. Drawbacks of human visual sensitivity based picture quality metrics are alleviated by integrating visual attention and depth information. We also show that positive correlation with ground-truth attention and depth maps are increased by up to 0.949 and 0.936 in terms of the Pearson and the Spearman correlation coefficients, respectively.

Heuristic Designs of SAD Correlation Algorithm for Vision System (비전 시스템 구현을 위한 SAD 정합 알고리즘의 변형)

  • Yi, Jong-Su;Kim, Jun-Seong
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.47 no.5
    • /
    • pp.61-66
    • /
    • 2010
  • A stereo vision, which is based on two or more images taken from different view points, is able to build three dimensional maps of its environment having various applications including robots and home networks. SAD algorithm, which is based on area-based correlation, is widely used since its regular structure provide abundant parallelism. In this paper, we present heuristic designs of SAD algorithm to meet the demands on accuracy and resource usages in various applications. The disparity abridgement and the window abridgement algorithms can be used for vision systems in low cost and small size. The window shape algorithm can be applicable when object are in specific shapes. The adaptive window algorithm work well when accuracy is the primary concern.

Probabilistic Anatomical Labeling of Brain Structures Using Statistical Probabilistic Anatomical Maps (확률 뇌 지도를 이용한 뇌 영역의 위치 정보 추출)

  • Kim, Jin-Su;Lee, Dong-Soo;Lee, Byung-Il;Lee, Jae-Sung;Shin, Hee-Won;Chung, June-Key;Lee, Myung-Chul
    • The Korean Journal of Nuclear Medicine
    • /
    • v.36 no.6
    • /
    • pp.317-324
    • /
    • 2002
  • Purpose: The use of statistical parametric mapping (SPM) program has increased for the analysis of brain PET and SPECT images. Montreal Neurological Institute (MNI) coordinate is used in SPM program as a standard anatomical framework. While the most researchers look up Talairach atlas to report the localization of the activations detected in SPM program, there is significant disparity between MNI templates and Talairach atlas. That disparity between Talairach and MNI coordinates makes the interpretation of SPM result time consuming, subjective and inaccurate. The purpose of this study was to develop a program to provide objective anatomical information of each x-y-z position in ICBM coordinate. Materials and Methods: Program was designed to provide the anatomical information for the given x-y-z position in MNI coordinate based on the Statistical Probabilistic Anatomical Map (SPAM) images of ICBM. When x-y-z position was given to the program, names of the anatomical structures with non-zero probability and the probabilities that the given position belongs to the structures were tabulated. The program was coded using IDL and JAVA language for 4he easy transplantation to any operating system or platform. Utility of this program was shown by comparing the results of this program to those of SPM program. Preliminary validation study was peformed by applying this program to the analysis of PET brain activation study of human memory in which the anatomical information on the activated areas are previously known. Results: Real time retrieval of probabilistic information with 1 mm spatial resolution was archived using the programs. Validation study showed the relevance of this program: probability that the activated area for memory belonged to hippocampal formation was more than 80%. Conclusion: These programs will be useful for the result interpretation of the image analysis peformed on MNI coordinate, as done in SPM program.