• 제목/요약/키워드: Dislocation Density

검색결과 230건 처리시간 0.029초

중수로 압력관 재료의 조사 열화에 따른 인장거동 특성 (Tensile Behavior Characteristics of CANDU Pressure Tube Material Degraded by Neutron Irradiations)

  • 안상복;김영석;김정규
    • 대한기계학회논문집A
    • /
    • 제26권1호
    • /
    • pp.188-195
    • /
    • 2002
  • To investigate the degradation of mechanical properties induced mainly by neutron irradiation, the tensile tests were conducted from room temperature to 300\\`c using the irradiated and the unirradiated Zr-2.5Nb pressure tube materials. The irradiated longitudinal and transverse specimens were collected from the coolant inlet, middle, and outlet parts of M-11 tube which had been operated in Wolsung CANDU Unit-1 and exposed to different operating temperatures and irradiation fluences. The different tensile behavior was characterized not by the fluences of irradiation but by the tensile loading direction. The transverse specimen showed the higher strength and lower elongation than those of the longitudinal one. It was believed that these phenomena resulted from the microstructure anisotropy caused by the extrusion process. The increased strength hardening and decreased elongation embrittlement of the irradiated material were compard to those of the unirradiated one. While the tensile strength of the inlet was higher than that of the outlet, the elongation of the inlet was lower than that of outlet. Considering the operation condition, it was proposed that the operating temperature could be a more effective parameter than the irradiation fluence for long-time life. Through the TEM observation, it was found that while the a-type dislocation density was increased, the c-type dislocation was not changed in the irradiated. The fact that the higher dislocation density was sequentially distributed over the inlet, the middle, and the outlet parts was consistent with the distribution of the tensile strength.

나노구조를 응용한 AlN 성장 방법 및 특성 (High Quality AlN Layer Regrown on AlN Nanostructure by Hydride Vapor Phase Epitaxy)

  • 손호기;김진원;임태영;이미재;김진호;전대우;황종희;오해곤;최영준;이혜용
    • 한국전기전자재료학회논문지
    • /
    • 제28권11호
    • /
    • pp.711-714
    • /
    • 2015
  • In this paper, high quality AlN layers were regrown on AlN nanopillar structure with $SiO_2$-dots by HVPE. Surface morphology of AlN layer regrown exhibited flatter than a conventional AlN template. The laterally overgrown AlN regions would consist of a continuous well coalesced layer with lower dislocation density than in the template because of the dislocation blocking and dislocation bending effects. Moreover, result of Raman spectroscopy suggest that the AlN nanopillar structure with $SiO_2$-dots relieves the strain in the AlN layer regrown by HVPE.

The Characteristics of GaN by MBE with InxGa1-xN buffer layer

  • 윤재성;박승호;이창명;정운형;양석진;강태원;;김득영
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 1999년도 제17회 학술발표회 논문개요집
    • /
    • pp.119-119
    • /
    • 1999
  • GaN-based 물질들은 blue와 UV 영역의 LED, LD와 같은 광소자가 상용화되었을 뿐만아니라 HBT, FET와 같은 전기소자로도 널리 응용될 시점이지만 아직까지 해결되지 않은 문제점들이 있다. 그 중에 하나가 바로 GaN의 격자상수와 일치하는 기판이 없어 발생하는 dislocation인데, 이를 해결하기 위한 방법으로 새로운 기판이나, buffer, 또는 새로운 성장방법(ELOG) 등을 시도하고 있으나 dislocation density는 아직 높은 (107~1010cm-2) 상태이다. 이에 본 연구에서는 dislocation을 줄이기 위한 방책으로 InxGa1-xN를 새로운 buffer층으로 사용하여 GaN 박막을 MBE 방법으로 성장하였다. InxGa1-xN를 선택한 이유는 GaN와의 격자상수차이가 In0.12Ga0.88N일 경우 거의 일치한다는 보고가 있으며, 특히 InGaN의 melting point는 GaN의 성장온도 보다는 약간 높기 때문에 GaN 박막을 성장할 때와 식힐 때의 InGaN 원자결합은 약하게 작용되며, 결국 이는 열적인 stress를 줄여주게 된다. 이와 같이 성장된 GaN 박막은 그 결정성을 XRD로 분석하였고, 표면과 계면을 SEM으로 관찰하였다. 그리고 그 광학적 특성을 저온 PL로서 조사하였다. 그 결과를 살펴보면 35$^{\circ}$ 근방에서 GaN(0002) peak가 나온 것으로 보아 wurtzite 구조가 성장됨을 XRD로부터 확인하였다. 그리고 저온 (12K) PL에서는 3.470eV의 D$^{\circ}$X peak뿐만 아니라 3.258eV에 해당하는 peak를 얻었는데, 이는 InxGa1-xN buffer layer의 vapour pressure가 높은 (<50$0^{\circ}C$)에 도달하게 됨으로써 dissociation이 일어나면서 초기 성장이 이루어졌고 이는 다시 계면에서의 inter-diffusion을 발생시킨 것으로 보여진다.

  • PDF

변형구배 결정소성 유한요소해석법을 이용한 니켈기 다결정 합금의 Hall-Petch 관계 모델링 (Modeling the Hall-Petch Relation of Ni-Base Polycrystalline Superalloys Using Strain-Gradient Crystal Plasticity Finite Element Method)

  • 최윤석;조경목;남대근;최일동
    • 한국재료학회지
    • /
    • 제25권2호
    • /
    • pp.81-89
    • /
    • 2015
  • A strain-gradient crystal plasticity constitutive model was developed in order to predict the Hall-Petch behavior of a Ni-base polycrystalline superalloy. The constitutive model involves statistically stored dislocation and geometrically necessary dislocation densities, which were incorporated into the Bailey-Hirsch type flow stress equation with six strength interaction coefficients. A strain-gradient term (called slip-system lattice incompatibility) developed by Acharya was used to calculate the geometrically necessary dislocation density. The description of Kocks-Argon-Ashby type thermally activated strain rate was also used to represent the shear rate of an individual slip system. The constitutive model was implemented in a user material subroutine for crystal plasticity finite element method simulations. The grain size dependence of the flow stress (viz., the Hall-Petch behavior) was predicted for a Ni-base polycrystalline superalloy NIMONIC PE16. Simulation results showed that the present constitutive model fairly reasonably predicts 0.2%-offset yield stresses in a limited range of the grain size.

Al-Mg합금의 압연변수에 다른 미세구조의 변화와 고온인장특성 (The effects of rolling process on microstructures and high temperature tensile properties of Al-Mg alloy)

  • 김태규;전채홍;권숙인;박종우
    • 열처리공학회지
    • /
    • 제10권2호
    • /
    • pp.81-92
    • /
    • 1997
  • The effect of alloying elements, precipitate size, its distribution, and dislocation substructure resulted from warm rolling or cold rolling in the superplastic Al-Mg alloy system was investigated. One of the major requirements for fine structure superplasticity is that the grain size should be very small. Fine grain structure is controlled by the dislocation substructure and the dynamic recrystallization during hot or warm working. The recovery of Al-Mg base alloys was constrained resulting in relatively high dislocation density when the alloys were warm rolled. In particular, Al-Mg-Zr alloy exhibited the smallest sub-grain size among Al-Mg alloys containing Mn, Cu, Zr as a third element. The Al-Mg-Mn alloy cold rolled 80% after hot rolling showed the maximun strain rate sensitivity exponent, m, of 0.75 under strain rate of $7.1{\times}10^{-4}/s$ at $500^{\circ}C$. The elongation of the alloys was limited in spite of high m values due to large dispersoids containing appreciable amount of Fe impurities.

  • PDF

저 T/Tm 온도에서 공석강 및 과공석강의 시간의존성 소성변형 기구 (Mechanisms of Time-dependent Plastic Deformation of Eutectoid and Hypereutectoid Steels at Low T/Tm Temperatures)

  • 최병호;정기채;박경태
    • 소성∙가공
    • /
    • 제25권6호
    • /
    • pp.359-365
    • /
    • 2016
  • The rate-controlling mechanisms for time-dependent plastic deformation of eutectoid and hyper-eutectoid pearlitic steels at low $T/T_m$ temperatures were explored. The strain rate - stress data obtained from a series of constant load tensile tests at $0.25{\sim}0.30T/T_m$ were applied to the power law, the lattice friction controlled plasticity, and the obstacle controlled plasticity. Of these models, the obstacle controlled plasticity was found to best-describe the rate-controlling mechanism for time-dependent plastic deformation of two steels at low $T/T_m$ temperatures in terms of the activation energy for overcoming the obstacles against dislocation glide in ferrite. The deformed microstructures revealed the dislocation forests of a high density as the main obstacles. In addition, the obstacle controlled plasticity well-explained the effects of cementite on the $0^{\circ}K$ flow stress of two steels.

Multiple unequal cracks between an FGM orthotropic layer and an orthotropic substrate under mixed mode concentrated loads

  • M. Hassani;M.M. Monfared;A. Salarvand
    • Structural Engineering and Mechanics
    • /
    • 제86권4호
    • /
    • pp.535-546
    • /
    • 2023
  • In the present paper, multiple interface cracks between a functionally graded orthotropic coating and an orthotropic half-plane substrate under concentrated loading are considered by means of the distribution dislocation technique (DDT). With the use of integration of Fourier transform the problem is reduced to a system of Cauchy-type singular integral equations which are solved numerically to compute the dislocation density on the surfaces of the cracks. The distribution dislocation is a powerful method to calculate accurate solutions to plane crack problems, especially this method is very good to find SIFs for multiple unequal cracks located at the interface. Hence this technique allows considering any number of interface cracks. The primary objective of this paper is to investigate the effects of the interaction of multiple interface cracks, load location, material orthotropy, nonhomogeneity parameters and geometry parameters on the modes I and II SIFs. Numerical results show that modes I/II SIFs decrease with increasing the nonhomogeneity parameter and the highest magnitude of SIF occurs where distances between the load location and crack tips are minimal.

Effect of Heat Treatment Conditions on Corrosion and Hydrogen Diffusion Behaviors of Ultra-Strong Steel Used for Automotive Applications

  • Park, Jin-seong;Seong, Hwan Goo;Kim, Sung Jin
    • Corrosion Science and Technology
    • /
    • 제18권6호
    • /
    • pp.267-276
    • /
    • 2019
  • The purpose of this study was to examine the influence of conditions for quenching and/or tempering on the corrosion and hydrogen diffusion behavior of ultra-strong automotive steel in terms of the localized plastic strain related to the dislocation density, and the precipitation of iron carbide. In this study, a range of analytical and experimental methods were deployed, such as field emission-scanning electron microscopy, electron back scatter diffraction, electrochemical permeation technique, slow-strain rate test (SSRT), and electrochemical polarization test. The results showed that the hydrogen diffusion parameters involving the diffusion kinetics and hydrogen solubility, obtained from the permeation experiment, could not be directly indicative of the resistance to hydrogen embrittlement (HE) occurring under the condition with low hydrogen concentration. The SSRT results showed that the partitioning process, leading to decrease in localized plastic strain and dislocation density in the sample, results in a high resistance to HE-induced by aqueous corrosion. Conversely, coarse iron carbide, precipitated during heat treatment, weakened the long-term corrosion resistance. This can also be a controlling factor for the development of ultra-strong steel with superior corrosion and HE resistance.

상압소성된 $TiC-TiB_2$ 복합내화재의 미세구조 (On the microstructure of pressureless sintered $TiC-TiB_2$ composite refractory)

  • 심광보;김현기;오근호
    • 한국결정성장학회지
    • /
    • 제7권4호
    • /
    • pp.632-639
    • /
    • 1997
  • 단일상으로서는 치밀한 소결이 힘든 TiC 와 $TiB_2$ 혼합조성을 상압소결하여 얻어진 TiC-$TiB_2$ 고온복합체의 소결밀도와 미세구조를 연구하였다. 소성조제의 임계첨가량은 1 wt% Fe 및 3 wt% Ni으로 최대 소결밀도는 약 95%이었다. TiC-$TiB_2$ 복합체의 미세구조에서 TiC상은 matrix로서 $TiB_2$입자성장을 저지하였고, wave 흑은 계단식 상계면의 존재는 석출된 Ni-rich phases가 소결중 액상으로 존재하다가 냉각시 고화한 것으로 TEM분석결과 확인할 수 있었다. 또한, 이들 Ni-rich phases는 matrix grain안에서 dislocation형성 요인으로 작용하고 있음이 확인되었다.

  • PDF