• Title/Summary/Keyword: Disk-shaped

Search Result 127, Processing Time 0.033 seconds

Combustion Characteristics of Methane-Hydrogen-Air Premixture(II) (메탄-수소-공기 예혼합기의 연소특성(II))

  • 김봉석;이영재
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.3
    • /
    • pp.156-167
    • /
    • 1996
  • The present work is a continuation of our previous study to investigate the effects of parameters such as equivalence ratio, hydrogen supplement rate and initial pressure on combustion characteristics in a disk-shaped constant volume combustion chamber. The main results obtained from the study can be summarized as follows. The flames in near stoichiometric mixture of methane-air are propagated with a spherical shape, but in excess rich or lean mixtures are propagated with a elliptical shape. And, they are changed to an unstable elliptical shape flame with very regular cells by increasing the hydrogen supplement rate. Also, flame is sluggishly propagated at increased initial pressure in combustion chamber. Volume fraction of burned gas and flame radius as the combustion characteristics are increased by increasing the hydrogen supplement rate, especially at the combustion middle period, but then are slowly increased by increasing the initial pressure.

  • PDF

Fabrication of the Windmill Type Ultrasonic Its Characteristics of Torque and Bidirectional Revolution (풍차형 초음파 전동기의 제작과 토크 및 정$\cdot$역회전특성)

  • Kim, Young-Gyun;Kim, Jin-Soo
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.50 no.3
    • /
    • pp.105-109
    • /
    • 2001
  • In this paper, the windmill type ultrasonic motors with 11.35 mm diameter, 2.87 mm thickness of metal endcap and 1.47 g weight were fabricated. Effects of slots and thickness on torque characteristic in the windmill type ultrasonic motor were investigated, when stator's slots were changed from 4, 6, 8 and thickness 0.15 mm, respectively. Specially designed metal endcaps with windmill shaped cutting can provide longitudinal and torsional displacements simultaneously as the ceramic disk vibrates radically. The windmill type ultrasonic motor has only three components: a stator element with windmill shape slotted metal endcap, a rotor and bearing. Ultrasonic motor stimulated to ultrasonic oscillations by piezoelectrics to drive a rotor via friction contact. The ultrasonic motor fabricated here was the windmill type ultrasonic motor operated by single-phase AC source. Bidirectional revolution using single-phase high frequency for driving the ultrasonic motor was presented.

  • PDF

Hot Precision Forging with a Back-pressure of Al-Si Alloy for Scroll Type Compressor Parts (열간 배압 성형 기술을 이용한 Al-Si합금 스크롤의 정형 제조 기술)

  • 이영선;이정환;이상용;박영도;이운섭
    • Transactions of Materials Processing
    • /
    • v.9 no.1
    • /
    • pp.52-58
    • /
    • 2000
  • Hot precision forging with a back pressure was investigated for manufacturing of compressor parts made of Al-Si alloy. Disk-shaped blank made of Al-Si alloy was hot forged, and ribs were formed by loading back pressure on their top. The influence of the back pressure and die temperature on forgeability and properties of parts made of Al-Si alloy were examined. Using the F.E.M. simulation, we found the optimum vallue of back-pressure. The prototypes of scroll parts were forged into the near-net shape and satisfied the required properties.

  • PDF

Collision Test between Ice Floe and Ship Transiting the Pack Ice

  • Kim, Hyo-Il;Sawamura, Junji;Jun, Seung-Hwan
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2015.10a
    • /
    • pp.37-39
    • /
    • 2015
  • The ships transiting the Northern Sea Route (NSR) have been gradually increased so that the number of ship-ice collision accidents would be increased. The collision between ship and ice floe can lead to serious damage of hulls and decline of ship's maneuverability. In this study, collision tests that a model ship is forced to collide with disk-shaped synthetic ice floes are conducted in a towing tank. The synthetic ice floes made of polypropylene which has similar density with real ice are used. The ice load is measured by a load cell installed on the carriage rod. The ice floe's motion is measured by a motion sensor installed on the synthetic ice floe. The influences of contact conditions such as hull form and ship speed on the ship-ice collision response are investigated and discussed by measured peak force and ice floe's motion.

  • PDF

An experimental investigation of artificial supercavitation generated by air injection behind disk-shaped cavitators

  • Ahn, Byoung-Kwon;Jeong, So-Won;Kim, Ji-Hye;Shao, Siyao;Hong, Jiarong;Arndt, Roger E.A.
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.9 no.2
    • /
    • pp.227-237
    • /
    • 2017
  • In this paper, we investigated physical characteristics of an artificial supercavity generated behind an axisymmetric cavitator. Experiments for the same model were carried out at two different cavitation tunnels of the Chungnam National University and the University of Minnesota, and the results were compared and verified with each other. We measured pressures inside the cavity and observed the cavity formation by using a high-speed camera. Cavitation parameters were evaluated in considering blockage effects of the tunnel, and gravitational effects on supercavity dimensions were examined. Cavity dimensions corresponding to the unbounded cavitation number were compared. In addition, we investigated how artificial supercavitation develops according to the combination of injection positions and direction.

Three-dimensional Spatiotemporal Accessible Solitons in a PT-symmetric Potential

  • Zhong, Wei-Ping;Belic, Milivoj R.;Huang, Tingwen
    • Journal of the Optical Society of Korea
    • /
    • v.16 no.4
    • /
    • pp.425-431
    • /
    • 2012
  • Utilizing the three-dimensional Snyder-Mitchell model with a PT-symmetric potential, we study the influence of PT symmetry on beam propagation in strongly nonlocal nonlinear media. The complex Coulomb potential is used as the PT-symmetric potential. A localized spatiotemporal accessible soliton solution of the model is obtained. Specific values of the modulation depth for different soliton parameters are discussed. Our results reveal that in these media the localized solitons can exist in various shapes, such as single-layer and multi-layer disk-shaped structures, as well as vortex-ring and necklace patterns.

In Vitro Study Evaluating the Antimicrobial Activity of Vancomycin-Impregnated Cement Stored at Room Temperature in Methicillin-Resistant Staphylococcus aureus (상온에서 보관한 반코마이신 함유 항생제 시멘트의 메티실린 내성 포도상구균에 대한 항균력 조사)

  • Park, Se-Jin;Cho, Yongun;Lee, Seok Won;Woo, Hee-Yeon;Lim, Sang Eun
    • Journal of Korean Foot and Ankle Society
    • /
    • v.22 no.1
    • /
    • pp.38-43
    • /
    • 2018
  • Purpose: Treatment of diabetic foot infection due to methicillin-resistant Staphylococcus aureus (MRSA) remains challenging. Applying vancomycin-impregnated cement is one of the best methods of treatment. Vancomycin-impregnated cement has been used worldwide; however, to date, there is a limited number of studies regarding its use. We evaluated the duration of antimicrobial activity of vancomycin-impregnated cement stored at room temperature after manufacturing. Materials and Methods: The vancomycin-impregnated cement was manufactured by mixing 1 g of vancomycin with 40 g of polymer and adding 17.90 g of liquid monomer. The cement dough was shaped into flat cylinders with diameter and height of 6 mm and 2 mm, respectively. Another cement of the same shape without mixing vancomycin was prepared as the negative control. All manufactured cements were sterilized with ethylene oxide gas and stored at room temperature. Each cement was placed on Mueller Hinton agar plate lawned with standard MRSA strain. Standard vancomycin disk and gentamicin disk were placed together. After 24 hours, the diameter of inhibition zone was measured, and if the diameter was less than 15 mm, vancomycin-impregnated cement was regarded as a loss of antimicrobial activity. The study was repeated every 2 weeks until vancomycin-impregnated cements lost their antimicrobial activity. Results: Vancomycin-impregnated cement stored for a duration of 16 weeks created a 14 mm inhibition zone, while vancomycin disk created a 15 mm inhibition zone. Vancomycin-impregnated cement stored for a duration of 17 weeks created 7 mm and 9 mm inhibition zones, while vancomycin disk created 16 mm and 15 mm inhibition zones, respectively. Conclusion: We found a decrease of antimicrobial activity in vancomycin-impregnated cements after 16 weeks. After 17 weeks, they showed definite loss of antimicrobial activity. Therefore, we recommend not using vancomycin-impregnated cement spacers that has been stored for more than 16 weeks at room temperature.

Study on the Coefficient of Thermal Expansion for Composites Containing 2-Dimensional Ellipsoidal Inclusions (2차원 타원형의 충전제를 함유하는 복합재료의 열팽창 계수 연구)

  • Lee, Kee-Yoon;Kim, Kyung-Hwan;Jeoung, Sun-Kyoung;Jeon, Hyoung-Jin;Joo, Sang-Il
    • Polymer(Korea)
    • /
    • v.31 no.2
    • /
    • pp.160-167
    • /
    • 2007
  • This paper proposes a model for the solutions predicting the coefficient of thermal expansion of composites including fiber-like shaped$(a_1>a_2=a_3)$ and disk-like shaped$(a_1=a_2>a_3)$ inclusions like two dimensional geometries, which was analyzed by one axis and a single aspect ratio, $(\rho_\alpha=a_1/a_3)$. The analysis follows the procedure developed for elastic moduli by using the Lee and Paul's approach. The effects of the aspect ratio on the coefficient of thermal expansion of composites containing aligned isotropic inclusions are examined. This model should be limited to analyze the composites with unidirectionally aligned inclusions and with complete binding to each other of both matrix and inclusions having homogeneous properties. The longitudinal coefficients of thermal expansion $\alpha_{11}$ decrease and approach the coefficient of thermal expansion of filler, as the aspect ratios increase. However, the transverse coefficients of thermal expansion $\alpha_{33}$ increase or decrease with the aspect ratios.

Effect of irradiation and LDPE content on crystal formation of PP (PP의 결정형성에 대한 조사가교와 LDPE 함량의 영향)

  • Dahal, Prashanta;Kim, Youn Cheol
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.6
    • /
    • pp.4039-4045
    • /
    • 2014
  • The crystallization behavior of irradiated polypropylene (PP) and the blend is an important parameter for polymer processing. Blends of PP/low density polyethylene (LDPE) with different LDPE contents were prepared by melt mixing in a twin screw extruder. The effect of the LDPE content on the irradiation effectiveness of the PP/LDPE blend with trimethylolpropane-trimetacrylate (TMPTMA) as a crosslinking co-agent was investigated in conjunction with the LDPE loading in the blend. The non-isothermal crystallization and crystal structure were measured by DSC, X-ray diffraction (XRD), and polarized optical microscopy (POM). A decrease in the melting temperature of PP was observed due to irradiation, which may be due to the PP chain scissioning effect of irradiation. The Ozawa component n represents a rod shaped, disc shaped and sphere-shaped geometry of the crystal if the value corresponds to 2, 3 and 4, respectively. Based on Ozawa analysis, the values of n were 3.8 and 2.3 for the pure PP and PP blends with 30 wt% LDPE, respectively. The fact that the crystal geometry of PP changed from spherical to disc and rod shaped was confirmed by Ozawa analysis and POM. The ${\beta}$ form XRD peak of the PP/LDPE blend at $16.1^{\circ}$ disappeared after irradiation due to the crosslinking reaction.

Micro Emulsion Synthesis of LaCoO3 Nanoparticles and their Electrochemical Catalytic Activity

  • Islam, Mobinul;Jeong, Min-Gi;Ghani, Faizan;Jung, Hun-Gi
    • Journal of Electrochemical Science and Technology
    • /
    • v.6 no.4
    • /
    • pp.121-130
    • /
    • 2015
  • The micro emulsion method has been successfully used for preparing perovskite LaCoO3 with uniform, fine-shaped nanoparticles showing high activity as electro catalysts in oxygen reduction reactions (ORRs). They are, therefore, promising candidates for the air-cathode in metal-air rechargeable batteries. Since the activity of a catalyst is highly dependent on its specific surface area, nanoparticles of the perovskite catalyst are desirable for catalyzing both oxygen reduction and evolution reactions. Herein, LaCoO3 powder was also prepared by sol-gel method for comparison, with a broad particle distribution and high agglomeration. The electro catalytic properties of LaCoO3 and LaCoO3-carbon Super P mixture layers toward the ORR were studied comparatively using the rotating disk electrode technique in 0.1 M KOH electrolyte to elucidate the effect of carbon Super P. Koutecky-Levich theory was applied to acquire the overall electron transfer number (n) during the ORR, calculated to be ~3.74 for the LaCoO3-Super P mixture, quite close to the theoretical value (4.0), and ~2.7 for carbon-free LaCoO3. A synergistic effect toward the ORR is observed when carbon is present in the LaCoO3 layer. Carbon is assumed to be more than an additive, enhancing the electronic conductivity of the oxide catalyst. It is suggested that ORRs, catalyzed by the LaCoO3-Super P mixture, are dominated by a 2+2-electron transfer pathway to form the final, hydroxyl ion product.