• Title/Summary/Keyword: Disk source

Search Result 177, Processing Time 0.024 seconds

Identifications and Reduction Methods of Aerodynamic Noise Sources in High Speed Rotating Optical Disk Drive (고속으로 회전하는 광디스크 드라이브의 공력 소음원 규명 및 소음저감방법)

  • Kim, Yong-Seok;Lee, Duck-Joo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.6 s.123
    • /
    • pp.477-483
    • /
    • 2007
  • Major noise source in high speed rotating optical disk drives (CD and DVD-ROM) arises due to the high-speed airflow produced from the upper and lower surfaces on the rotating disk. The present paper deals with the experimental approach how to identify the noise source based on the fundamental principles of aeroacoustics and to propose a reduction method of the noise source. The CD-ROM device is composed of disk, window tray, motors at the bottom place and electronic circuit plate also located below the window plate. The window is cut in the tray to read the disk information using the optical device located below the tray and moving linearly from the center of the disk through the end of the disk. All components are possible noise generators. Experimental studies were carried out in the anechoic room with various design modifications, such as tray geometry, window size and hole location on tray, to identify the major aerodynamic noise source and significant reductions of the aerodynamic noise were obtained.

GREEN'S FUNCTION APPROACH TO THERMAL DEFLECTION OF A THIN HOLLOW CIRCULAR DISK UNDER AXISYMMETRIC HEAT SOURCE

  • GAIKWAD, KISHOR R.;NANER, YOGESH U.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.25 no.1
    • /
    • pp.1-15
    • /
    • 2021
  • A Green's function approach is adopted to solve the two-dimensional thermoelastic problem of a thin hollow circular disk. Initially, the disk is kept at temperature T0(r, z). For times t > 0, the inner and outer circular edges are thermally insulated and the upper and lower surfaces of the disk are subjected to convection heat transfer with convection coefficient hc and fluid temperature T∞, while the disk is also subjected to the axisymmetric heat source. As a special case, different metallic disks have been considered. The results for temperature and thermal deflection has been computed numerically and illustrated graphically.

The Identification of Vibration Sources in Optical Disk Drive Using PCF Method (PCF 기법을 이용한 광디스크 드라이브의 진동원 규명)

  • 함경훈;장영배;박노철;박영필
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.127-133
    • /
    • 2002
  • After the vibration source is searched in optical disk drive as an information storage device broadly used the influence of it against FES(Focusing Error Signal) which is a kind of positioning error of pick up from the circuit is carefully examined. For that Purpose, partial coherence function method is applied on a simple multi-degree of freedom model made for the theoretical verification and it is practically introduced in optical disk drive for analyzing the effect of vibration source. Finally, partial coherence output spectrum is attentively observed in order to know which vibration source is a great influence on FES.

  • PDF

Time-dependent variations of accretion disk (Accretion disk의 시간에 따른 변화)

  • 나혜원;김경미;최규홍
    • Journal of Astronomy and Space Sciences
    • /
    • v.4 no.1
    • /
    • pp.11-23
    • /
    • 1987
  • In dward nova we assume the primary star as a white dwarf and the secondary as the late type star which filled Roche lobe. Mass flow from the secondary star leads to the formation of thin accretion disk around the white dwarf. We use the $\alpha$ parameter as viscosity to maintain the disk form and propose that the outburst in dwarf nova cause the step increase of source term. With these assumptions we solve the basic equations of stellar structure using New-Raphson method. We show the physical parameters like temperature, density, pressure, opacity, surface density, height and flux to the radius of disk. Changing the value of $\alpha$, we compare several parameters when mass flow rate is constant with those of when luminosity of disk is brightest. At the same time, we obtain time-dependent variations of luminosity and mass of disk. We propose the suitable range of $\alpha$is 0.15-0.18 to the difference of luminosity. We compare several parameters of disk with those of the normal late type stars which have the same molecular weight of disk. These show the temperature and pressure of disk are similar to those of normal stars but the density of disk is lower. Maybe the outburst in dwarf nova is due to the variation of the $\alpha$ value instead of increment of mass flow from the secondary star.

  • PDF

Vibration Source Identification and Finite Element Model Construction of Optical Disk Drive (광디스크 드라이브의 진동 원인 규명 및 유한요소 모델 구축)

  • Oh, Won-Seok;Lim, Seung-Ho;Park, No-Cheol;Park, Kyoung-Su;Park, Young-Pil;Yoo, Seugng-Hon;Lee, Han-Baek
    • Transactions of the Society of Information Storage Systems
    • /
    • v.8 no.1
    • /
    • pp.22-26
    • /
    • 2012
  • Optical disk drives (ODDs) are subjected to vibrations caused by the high-speed rotation of the optical disk, and these vibrations can be excessive and reduce the read/write performance. Elastic rubber mounts with cushioning materials are often used to minimize these problems. In this paper, the source of vibrations was identified by experimental modal tests and high-speed photography. Structural modifications were made based on a lumped parameter model and a finite element model.

Mathematical Models on Diffusive Loss of Non-Aqueous Phase Organic Solvents from a Disk Source (디스크소스로부터 NAPL의 확산손실에 관한 수학적 모델)

  • Yoon, In-Taek;S.E., Dickson
    • Journal of Soil and Groundwater Environment
    • /
    • v.13 no.6
    • /
    • pp.40-49
    • /
    • 2008
  • Matrix diffusion from planar fractures was studied mathematically and through physical model experiments. Mathematical models were developed to simulate diffusion from 2D and 3D instantaneous disk sources and a 3D continuous disk source. The models were based on analytical solutions previously developed by Carslaw and Jaeger (1959). The mathematical simulations indicated that the 2D scenario produces significantly different results from the 3D scenario, the time for mass disappearance is significantly larger for continuous sources than for instantaneous sources, the normalized concentration generally decreased over time for instantaneous sources while it increased over time for continuous sources, diffusion rates decrease significantly over time and space, and the normalized mass loss from the source zone never reaches 1 for continuous sources due to the semi-infinite integral. The simulations also showed that disappearance times increase exponentially with increasing source radii and matrix porosity, and decrease with increasing aqueous-phase NAPL solubilities.

Effect of Characteristics of Disk Surface on Particle Adhesion and Removal in a Hard Disk Drive (HDD 내 디스크 표면 특성이 미세입자의 부착 및 이탈에 미치는 영향)

  • 박희성;좌성훈;황정호
    • Tribology and Lubricants
    • /
    • v.16 no.6
    • /
    • pp.415-424
    • /
    • 2000
  • The use of magnetoresistive (MR) head requires much tighter control of particle contamination in a drive since loose particles on the disk surface will generate thermal asperities (TA). In this study, a spinoff test was performed to investigate the adhesion and removal capability of a particle to disk surface. Numerical simulation was also performed to investigate dominant factor of particle detachment and to support experimental results. It was shown that particles are detached from the disk surface by the moment derived from the centrifugal force and the drag force and that the centrifugal force and capillary force are the dominant force, which determines spin-off of a particle on the disk surface. Removal of particles smaller than several micrometers, which are the main source of TA generation, is extremely difficult since the adhesion forces exceed the centrifugal force. Lubricant types and manufacturing process also influence the particle removal. Lower bonding ratio and lower viscosity of the lubricant will help to increase the removal rate of the particles from the disk surface.

Noise Source Identification and Acoustic Radiation Power Reduction of Hard Disk Drive Using Sound Intensity (음향 인텐시티를 이용한 하드디스크 드라이브의 소음원 파악 및 음향파워 제어)

  • Kang, Seong-Woo;Han, Yun-Sik;Hwang, Tae-Yeon;Son, Young;Koo, Ja-Choon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.1540-1548
    • /
    • 2000
  • Sound intensity techniques and ODS(Operational Deflection Shape) techniques are applied to identify the acoustic noise source of a hard disk drive and its control system. The sound intensity is used to visualize the noise source locations, and the ODS information to visualize the vibration pattern and to obtain the dynamic characteristics of the noise sources. The measurement systems are customized to accurately measure the sound intensity and ODS distributions of HDD system in space domains as well as frequency domains. The measurement systems for the sound absorption and transmission loss of materials are also used to support the background data for the efficient noise control. Using the visual information of source locations and its dynamic characteristics, the partial noise barrier structure and optimum absorption are designed and its controlled sound power level is proved to be under 3.1 Bel(Idle)/3.3Bel (Seek) which is the lowest level in the disk drive industry.

  • PDF

우리 은하의 적외선 모형 II

  • Gang, Yong-Hui
    • Publications of The Korean Astronomical Society
    • /
    • v.7 no.1
    • /
    • pp.231-253
    • /
    • 1992
  • A model for the distribution of stars in the disk and the spheroid of our Galaxy is reexamined from an edge-on view of the Galaxy obtained by selecting infrared sources from the IRAS Point Source Catalog. The sources are counted as a function of galactic latitude. longitude and $12{\mu}m$ apparent magnitude. The source counts are reasonably separated into the disk component and the spheroid component contributions and each of the contributions is further interpreted as a convolution of a spatial density distribution and a luminosity function based on the least-square fit method. The spatial density of the disk component has an exponential radial scale length of $h_R{\sim}2.6\;kpc$ and the vertical distribution follows a canonical $sech^2$ law with a scale height $h_z{\sim}240\;pc$. The distribution of the spheroid component can be represented by an oblate spheriod with an axis ratio $k{\sim}0.61$ and a de Vaucouleurs' $r^{1/4}$ law with an effective radius of $R_e{\sim}120\;pc$. The steep density gradient of the spheroid component is consistent with that of late M giants in the central bulge. The luminosity functions of the disk and the spheroid component stars resemble respectively those of the K luminosity function of disk M giants (Garwood and Jones 1986) and the bolometric luminosity function of M giants in bulge fields (Frogel et al, 1990).

  • PDF

A Study on Vibration Reduction of an Optical Disk Drive with the Misaligned Axis of Rotation (회전축 정렬불량 광디스크 드라이브의 진동 저감에 관한 연구)

  • 강봉진;정태은;신효철;오주환
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.5
    • /
    • pp.122-130
    • /
    • 2004
  • In a high-speed and wide operating field optical disk drive, the vibration problem is one of the most important factors to be considered for reliable performance. And a disk misaligned with axis of rotation is a major source of vibration in optical disk drive. Furthermore, this vibration disturbance of the disk spindle system causes failure in the reading and writing process. So to solve this vibration problem, the vibration absorber using rubber mount has been introduced in recent years. In this paper, we have analyzed the simple optical disk drive model with dynamic vibration absorber through dynamic analysis of 12-dof by Recurdyn program and obtained optimal mass and frequency ratios of dynamic vibration absorber of dynamic vibration absorber and the optimal frequency ratio.