• Title/Summary/Keyword: Disk rotor

Search Result 150, Processing Time 0.025 seconds

Rarefied Gas Flows in Spiral Channels of a Disk-Type Drag Pump (원판형 드래그펌프내의 희박기체유동)

  • Hwang, Young-Kyu;Heo, Joons-Sik
    • 유체기계공업학회:학술대회논문집
    • /
    • 2000.12a
    • /
    • pp.82-87
    • /
    • 2000
  • The direct simulation Monte Carlo (DSMC) method is applied to investigate the flow field of a disk-type drag pump. The pumping channels are cut on both sides of a rotating disk. The rotor has 10 Archimedes' spiral blades. In the present DSMC method, the variable hard sphere model is used as a molecular model, and the no time counter method is employed as a collision sampling technique. For simulation of diatomic gas flows, the Larsen-Borgnakke phenomenological model is adopted to redistribute the translational and internal energies.

  • PDF

Finite Element Modal Analysis of a Spinning Flexible Disk-spindle System Supported by a Flexible Base Plate in a HDD (유연한 베이스 플레이트로 지지되는 회전 유연 HDD 디스크-스핀들계의 유한 요소 진동 해석)

  • 한재혁;장건희
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.571-577
    • /
    • 2003
  • This research proposes a finite element method to determine the natural vibration characteristics of the spinning disk-spindle system in a HDD including the flexibility of supporting structure. Finite element equations of each substructure are derived with the introduction of consistent variables to satisfy the geometric compatibility at the internal boundaries. The natural frequencies and modes from the global asymmetric matrix equations of motion are determined by using the implicit restarted Arnoldi iteration method. The validity of the proposed method is verified by the experimental modal testing. It also shows that the flexibility of base plate plays an important role to determine the natural frequencies of the spinning disk-spindle system in a HDD.

  • PDF

CFD/CSD COUPLED ANALYSIS FOR HART II ROTOR-FUSELAGE MODEL AND FUSELAGE EFFECT ANALYSIS (HART II 로터-동체 모델의 CFD/CSD 연계해석과 동체효과 분석)

  • Sa, J.H.;You, Y.H.;Park, J.S.;Park, S.H.;Jung, S.N.;Yu, Y.H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.343-349
    • /
    • 2011
  • A loosely coupling method is adopted to combine a computational fluid dynamics (CFD) solver and the comprehensive structural dynamics (CSD) code, CAMRAD II, in a systematic manner to correlate the airloads, vortex trajectories, blade motions, and structural loads of the HART I rotor in descending flight condition. A three-dimensional compressible Navier-Stokes solver, KFLOW, using chimera overlapped grids has been used to simulate unsteady flow phenomena over helicopter rotor blades. The number of grids used in the CFD computation is about 24 million for the isolated rotor and about 37.6 million for the rotor-fuselage configuration while keeping the background grid spacing identical as 10% blade chord length. The prediction of blade airloads is compared with the experimental data. The current method predicts reasonably well the BVI phenomena of blade airloads. The vortices generated from the fuselage have an influence on airloads in the 1st and 4th quadrants of rotor disk. It appeared that presence of the pylon cylinder resulted in complex turbulent flow field behind the hub center.

  • PDF

Stress Analysis of Fir-Tree Root in Turbine Rotor Using Photoelastic Technique (광탄성기법을 이용한 터빈로터 퍼-트리부의 응력해석)

  • Sin, Gwang-Bok;Gyeong, U-Min;Hong, Chang-Seon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.6
    • /
    • pp.1784-1797
    • /
    • 1996
  • The disk/blade assembly of a turbine engine is made in the shape of a dovetail type or a fir-tree type. Since disk fillet regions or contact surfaces undergo high stress comcentration, fatigue cracks frequentrly occur in the disk/blade assembly. Therefore, it is necessary to analyze the stress distributions in the fir-tree type disk/balde assembly and predict the region of fatigue failure. The stress distributions of the disk/blade assembly were investigated by using the photoelastic method and the finite element method. Two dimensional photoelastic techniques were used to investigate the stress distributions of contact surfaces and fillet regions. TH stress distributions were obtained by the shear-difference method and were compared to the finite element results. It was found that maximum tensile stresses were higher in the fillet region thatn in the contact surfaces of the fir-tree models. The finite element results showed good agreement with the experimental results.

Finite Element Modal Analysis of a Spinning Flexible Disk-Spindle System Considering the Flexibility of Supporting Structures and an Head-Suspension-Actuator in a HDD (지지구조와 헤드-서스펜션-액츄에이터의 유연성을 고려한 HDD 유연 회전 디스크-스핀들 시스템의 유한 요소 고유 진동 해석)

  • Seo, Chan-Hee;Lee, Ho-Sung;Sang, Gun-Hee
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.128-135
    • /
    • 2006
  • This paper presents a finite element method to analyze the free vibration of a flexible HDD composed of the spinning disk-spindle system with fluid dynamic bearings(FDBs), the head-suspension-actuator with pivot bearings, and the base plate with complicated geometry. Experimental modal testing shows that the proposed method well predicts tue vibration characteristics of a HDD. This research also shows that even the vibration motion of the spinning disk corresponding to half-speed whirl and the pure disk mode are transferred to a head-suspension-actuator and base plate through the air bearing and the pivot bearing consecutively. The proposed method can be effectively extended to investigate the forced vibration of a HDD and to design a robust HDD against shock.

  • PDF

Finite Element Modal Analysis of a Spinning Flexible Disk-spindle System Considering the Flexibility of Supporting Structures and an Head-suspension-actuator in a HDD (지지구조와 헤드-서스펜션-액추에이터의 유연성을 고려한 HDD 유연 회전 디스크-스핀들 시스템의 유한 요소 고유 진동 해석)

  • Seo, Chan-Hee;Lee, Ho-Sung;Jang, Gun-Hee
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.1 s.118
    • /
    • pp.24-32
    • /
    • 2007
  • This paper presents a finite element method to analyze the free vibration of a flexible HDD composed of the spinning disk-spindle system with fluid dynamic bearings(FDBs), the head-suspension-actuator with pivot bearings, and the base plate with complicated geometry. Experimental modal testing shows that the proposed method well predicts the vibration characteristics of a HDD. This research also shows that even the vibration motion of the spinning disk corresponding to half-speed whirl and the pure disk mode are transferred to a head-suspension-actuator and base plate through the air bearing and the pivot bearing consecutively. The proposed method can be effectively extended to investigate the forced vibration of a HDD and to design a robust HDD against shock.

SRM Driver Using Simple Position Sensor (간단한 위치센서를 이용한 SRM 드라이버)

  • An, Y.J.;Joe, C.J.;Ahn, J.W.;Hwang, Y.M.
    • Proceedings of the KIEE Conference
    • /
    • 1994.07a
    • /
    • pp.363-365
    • /
    • 1994
  • In switched reluctance motors(SRM), shaft position sensing is essential in order to synchronize the excitation pulse of a pertinent phase to the rotor position. This paper describes the operation of SRM drive using a simple position sensor of low cost. The position sensor is composed of a slotted disk similar to the rotor core shape of a prototype 6/4 SRM and three opto-interrupters disposed at an angle of 30 degrees. The phase current waveforms measured at several rotor speeds in experiment arc compared with those obtained through the computer simulation.

  • PDF

Vibration Control of Rotor Systems Using ER Effect (ER 효과를 이용한 회전축계의 진동제어)

  • Lim, Seung-Chul;Park, Sang-Min;Chae, Jeong-Jae
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.1119-1126
    • /
    • 2000
  • This paper is concerned with the design and application of an Electro-Rheological(ER) fluid damper to suppress the vibration of a rotor system. The system is flexible with a slender shaft and a thin disk, being supported by two ball bearings. In addition, to investigate the system performances also in the high speed range, the driving torque is made transmit through a speed increasing gear train. Along with the experiments, to predict and compare the ER damper effect, the rotor system is simulated as to its free and forced vibration characteristics by means of a finite element method code, which is assembled with the mathematical model of the designed ER damper.

  • PDF

A Study on the Vibration Characteristics of HDD Spindle Motor (하드 디스크 구동 스핀들 모터의 진동 특성에 관한 연구)

  • 장건희;한재혁
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.160-166
    • /
    • 1997
  • The spindle motor in a computer hard disk drive can be modeled as a rotor-bearing system supported by the base plate. Ball bearing is the crucial element to determine the stiffness of the spindle motor, and its design parameters and operating conditions determine the dynamic characteristics of the spindle motor. In the analysis of a rotor-bearing system with a short shaft like a spindle motor, the stiffness of the base plate as well as ball bearings must be considered accurately to analyze the dynamic charateristics of a spindle motor. In this paper, the lateral and the axial vibration of the spindle motor were analyzed by the transfer matrix method for the dual-shaft rotor-bearing model and by d.o.f lumped parameter model, respectively. The simulation results had good agreements with the experimental modal testing. The dynamic characteristics were fully investigated for the change of the major design parameters of the spindle motor, i.e. the preload of ball bearings and the rotational speed.

  • PDF

Analysis of Electromechanical - Coupled Field of the Spindle Motor in Computer Hard Disk Drives (컴퓨터 하드 디스크 드라이브용 스핀들 모터의 기전 연성계 해석)

  • Chang, Jung-Hwan;Jang, Gun-Hee;,
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.49 no.11
    • /
    • pp.742-748
    • /
    • 2000
  • This paper presents a numerical method to analyze the electromechanical-coupled field in the spindle motor of a computer hard drive and investigates dynamic response due to the electromechanical excitation, i.e. unbalanced magnetic force and centrifugal force for the rotational asymmetric motor. Magnetic field is calculated from Maxwells equation and voltage equation by introducing nonlinear time-dependent finite element analysis. Mechanical motion of rotor is calculated by solving Newton-Euler equation. Electromechanical excitation and dynamic response are characterized by analyzing the free response of a rotating rotor and Fourier analysis of the excitation force and resulting vibration of a rotor. It shows that centrifugal force produces the unbalanced magnetic force even in the rotational symmetric motor. It also shows that resonance produces quite considerable vibration even when the high excitation frequency with small amplitude matches with the natural frequency of the spindle motor.

  • PDF