• Title/Summary/Keyword: Disk displacement

Search Result 131, Processing Time 0.027 seconds

An analysis of plastic deformation occurring by interference fit of disk brake hub bolt (디스크 브레이크 허브 볼트의 억지 끼워 맞춤에서 발생하는 소성변형의 해석)

  • Lee, J.S.;Kwak, S.Y.;Kang, S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.05a
    • /
    • pp.238-241
    • /
    • 2008
  • A brake system in automobile is one of the important parts that directly affect the safety of passengers. Particularly, disk brake module is applied to almost all kinds of automobile brake system due to its remarkable braking power and braking distance. In the disk brake module of an automobile, the bolt for tire wheel is assembled to the disk brake hub by interference fit (bolt pressing process). The process induces small deformation whose range is within tens of ${\mu}m$ and this deformation may cause the runout badness of the whole disk brake module, and even braking problems such as judder or squeal phenomena which makes the loss of braking efficiency. In this study, bolt pressing fit into hub was simulated by $ANSYS^{TM}$, a commercial structure analysis program. Also, the aspect and the cause of hub displacement were analyzed and the solution for decreasing runout of hub was proposed.

  • PDF

Limit speeds and stresses in power law functionally graded rotating disks

  • Madan, Royal;Saha, Kashinath;Bhowmick, Shubhankar
    • Advances in materials Research
    • /
    • v.9 no.2
    • /
    • pp.115-131
    • /
    • 2020
  • Limit elastic speed analysis of Al/SiC-based functionally graded annular disk of uniform thickness has been carried out for two cases, namely: metal-rich and ceramic rich. In the present study, the unknown field variable for radial displacement is solved using variational method wherein the solution was obtained by Galerkin's error minimization principle. One of the objectives was to identify the variation of induced stress in a functionally graded disk of uniform thickness at limit elastic speed using modified rule of mixture by comparing the induced von-Mises stress with the yield stress along the disk radius, thereby locating the yield initiation. Furthermore, limit elastic speed has been reported for a combination of varying grading index (n) and aspect ratios (a/b).Results indicate, limit elastic speed increases with an increase in grading indices. In case of an increase in aspect ratio, limit elastic speed increases up to a critical value beyond which it recedes. Also, the objective was to look at the variation of yield stress corresponding to volume fraction variation within the disk which later helps in material tailoring. The study reveals the qualitative variation of yield stress for FG disk with volume fraction, resulting in the possibility of material tailoring from the processing standpoint, in practice.

AN EXPERIMENTAL STUDY OF THE EFFECT OF THE UNILATERAL TOOTH LOSS ON THE TEMPOROMANDIBULAR JOINT (편측치아결손(片側齒牙缺損)이 악관절(顎關節)에 미치는 영향(影響)에 관(關)한 실험적(實驗的) 연구(硏究))

  • Lim, Yong-Joon
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.17 no.1
    • /
    • pp.35-46
    • /
    • 1979
  • A number of experimental studies have been carried out in order to clarify the question as to how temporomandibular joint adapt to the changes of mandibular movement and occlusal equilibration. Recently, the studies on the interrelations between anatomical structure of temporomandibular joint and the state of occlusion have been actively performed in dentistry particularly in prosthodontic field. Author performed extraction of unilateral mandibular molars in 30 mature male rats, and observed histological changes of temporomandibular joint through the light microscope. Following results were obtained. 1. The loss of unilateral teeth gave rise to the changes in the location of condylar head, that is, interior displacement of condylar head in the extraction side and upper displacement in the non-extraction side. 2. Articular disk was compressed by the interior surface of condylar head, resulting in its extension below the condylar neck in the extraction side, and the histological arrangement of the compressed area showed irregular feature. 3. The extension of articular disk below the condylar neck was accompanied with the contraction of muscle fibers which were originated from the articular disk. 4. The cartilage layer of articular fossa to the exterior of the extraction side showed hypertropy. 5. Early in the experiment, the inernal extremity of condylar head of extract ion side showed bone resorption, and cartilage layer of condylar head showed hypertropy. At 12 weeks after experiment, the condylar surface showed flattened, and the cartilage layer of condylar head was replaced by the compact bone. 6. The articular disk showed the formation of pannus in the extraction side as well as in the non-extraction side. 7. The occlusal disturbance due to unilateral missing teeth has brought about the non-inflammatory retrogressive change and osteoarthrotic change late in the experiment.

  • PDF

Failure Study for Tribological Characteristics Including with Pad, Lining and Hub disk in Vehicle Brake System (자동차 제동시스템의 패드, 라이닝, 허브디스크에 관련된 트라이볼로지적인 특성에 관한 고장사례연구)

  • Lee, Il-Kwon;Kim, Chung-Kyun;Cho, Seung-Hyun
    • Tribology and Lubricants
    • /
    • v.27 no.5
    • /
    • pp.269-274
    • /
    • 2011
  • The purpose of this paper is to study and analyze the improvement method for the failure examples including the vehicle brake system in actual field. It was verified that the indicator plate of pad wear scratched the brake disk because of wearing after displacement of non- identification parts pad. The caliper of other vehicle was installed with brake system verified the phenomenon produced groove in center point because of one side wear when the pad was not fully contacted with the rub disk by other action surface pressure and pad action condition. It verified that the crack phenomenon fatigue was produced by brake thermal deformation because of decreasing the thickness by grinding to modify the non-uniformed wear of brake disk. It verified that the friction sound was produced by the friction phenomenon because of non-uniformed contact of lining and an alien substance with inner of the drum and lining braking by crack phenomenon with brake drum surface.

In-plane Stress Analysis of Relating Composite Disks (복합재료 회전원판의 면내응력 해석)

  • Koo Kyo-Nam
    • Composites Research
    • /
    • v.18 no.4
    • /
    • pp.8-13
    • /
    • 2005
  • Rotating circular disks are widely used in data storage devices as well as in traditional industrial machines. Faster rotating speed is required in data storage devices for higher data transfer rate. In this Paper an application of composite materials to CD is proposed to increase critical speeds and the strength analysis was performed. A differential equation of displacement is derived for the analytic stress distribution of rotating polar orthotropic disk. The stress distributions for typical GFRP and CFRP disks and the maximum allowable speeds subjected to a constraint of tensile strength are presented in addition to polycarbonate disk. The results show that the application of CFRP to rotating disk can increase the maximum allowable rotating speed but this may not be applicable to GFRP disk.

Behavior of Bridge Bearings for Railway Bridges under Running Vehicle

  • Choi, Eun-Soo;Yu, Wan-Dong;Kim, Jin-Ho;Park, Sun-Hee
    • International Journal of Railway
    • /
    • v.5 no.1
    • /
    • pp.10-21
    • /
    • 2012
  • Open steel plate girder (OPSG) bridges are the most prevalent railroad bridge type in Korea, constituting about 40% of all railroad bridges. Solid steel bearings, known as line type bearings, are placed in most OSPG railway bridges. However, the line type rigid bearings generate several problems with the bridge's dynamic behavior and maintenance in service. To compare and investigate the dynamic behaviors of line type, spherical and disk bearings, the vertical displacements of each bearing, including fixed and expansion type, under running vehicles are measured and analyzed. The displacements of disk and spherical bearings are measured after replacing the line type bearings with spherical and disk bearings. This study also analyzed dynamic behaviors of bridges. Furthermore, the deformation of the PTFE (Polytetrafluoroethylene) plate that is placed inside of expansion type spherical and disk bearings is measured and its effect on the dynamic behavior of the bridges is discussed. The up-lift phenomenon at the bearings installed for the steel bridges is estimated. The vertical displacements at mid-span of the bridges are compared according to the bearing types. Finally, the 1st mode natural frequencies are estimated, and the relationship to the vertical displacement is discussed.

A study on the characteristics of eddy current braking torque with electromagnet exciting (전자석을 이용한 와전류 제동기의 제동 특성에 관한 연구)

  • Kim, Cherl-Jin;Lee, Kwan-Yong;Kim, Yong-Ha;Han, Kyoung-Hee;Baek, Soo-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 2002.07b
    • /
    • pp.906-908
    • /
    • 2002
  • The technical improvement of servo system, it is required to study on robust control method in company. It needs to study on brake system that has constant torque-speed performance as load variation. In this paper, braking torque characteristics of eddy current braker between electromagnet stator and rotating disk are analyzed. The torque-speed characteristics and proper disk construction are presented. From the computer simulation results, it was found that eddy current braking torque is linear or approximately constant over the desired speed range depending on the rotor material, disk construction, pole number and pole displacement of stator. The relationship of these parameters are confirmed by experimental result.

  • PDF

A Small Disk-type Hybrid Self-healing Motor (소형 원판형 하이브리드 자기 부상 모터)

  • ;Yohji Okada
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.11 no.8
    • /
    • pp.338-348
    • /
    • 2001
  • A hybrid self-hearing motor, which Is a functional combination of general permanent magnet (PM) motor and hybrid active magnetic bearing(AMB), was proposed a few years ago. In this paper the hybrid self-bearing motor is modified to a disk type, in which one of two magnetic hearings was substituted for a thin yoke to make the system more compact. An outer rotors in this self-hearing motor is actively controlled only in two radial directions while the ocher motions are passively salable owing to the disk-type structure. Main advantages of the proposed self-hearing motor are simple control mechanism, low power consumption and smart structure. Mathematical model for the magnetic force Is built wish consideration of the radial displacement of the rotor. The model helps us not only to design a levitation controller but also to expect the system performance. Some experimental results show good capability and feasibility of the Proposed self-bearing motor.

  • PDF

A Study on the Contactless Transportation of Electrostatically-suspended Plates (정전기력에 의해 지지된 판상체의 비접촉반송에 관한 연구)

  • Chung, Il-Jin;Jeon, Jong-Up
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.12 s.177
    • /
    • pp.34-41
    • /
    • 2005
  • There is a strong demand fur the contactless transportation device fur a hard disk and silicon wafer without contaminating and damaging them. To fulfill this requirements, A transportation device fur them has been proposed. But the device needs many of costly displacement sensors positioned along the transportation interval and possesses a very complicated controller and driving scheme. To overcome those kinds of drawback, in this paper, we present a very simple and cost-effective transportation device which only consists of a linear guide, very simple electrostatic suspension system and driving circuit of stepping motor. The principle of stable suspension by relay feedback control, derivation of lateral restoring force, the design of transportation system are described, fellowed by the experimental system. Experimental results show that a 3.5-inch hard disk has been transported with a speed of approximately 20mm/s while being suspended stably at a gap of 0.25mm.