• Title/Summary/Keyword: Disk Simulation

Search Result 428, Processing Time 0.034 seconds

Analysis of dynamic characteristics between disk and slider with operational shock in hard disk drive (하드 디스크 드라이브 동작 상태 충격 시에 램프 충돌 유무에 따른 디스크와 슬라이더의 거동해석)

  • Kim, Min-Jae;Lim, Geonyup;Park, Kyoung-Su;Park, No-Cheol;Park, Young-Pil
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.975-977
    • /
    • 2014
  • Recently, As portability of storage device has been increased, it is important to analyze the precise anti-shock analysis. For non-operational shock analysis, the accuracy of non-operational shock simulation has been improved. However, because operational shock analysis includes nonlinear process, it is hard to get clear result from operational shock simulation. In this paper, by using Lagrange multiplier method, the FE model including ramp-disk contact of nonlinear process will be analyzed. Through this, we find ramp-disk contact affect the dynamic of slider. Additionally, for the more accurate analysis, we should include ramp-disk contact process at the FE model.

  • PDF

Effect of Characteristics of Disk Surface on Particle Adhesion and Removal in a Hard Disk Drive (HDD 내 디스크 표면 특성이 미세입자의 부착 및 이탈에 미치는 영향)

  • 박희성;좌성훈;황정호
    • Tribology and Lubricants
    • /
    • v.16 no.6
    • /
    • pp.415-424
    • /
    • 2000
  • The use of magnetoresistive (MR) head requires much tighter control of particle contamination in a drive since loose particles on the disk surface will generate thermal asperities (TA). In this study, a spinoff test was performed to investigate the adhesion and removal capability of a particle to disk surface. Numerical simulation was also performed to investigate dominant factor of particle detachment and to support experimental results. It was shown that particles are detached from the disk surface by the moment derived from the centrifugal force and the drag force and that the centrifugal force and capillary force are the dominant force, which determines spin-off of a particle on the disk surface. Removal of particles smaller than several micrometers, which are the main source of TA generation, is extremely difficult since the adhesion forces exceed the centrifugal force. Lubricant types and manufacturing process also influence the particle removal. Lower bonding ratio and lower viscosity of the lubricant will help to increase the removal rate of the particles from the disk surface.

Divided Disk Cache and SSD FTL for Improving Performance in Storage

  • Park, Jung Kyu;Lee, Jun-yong;Noh, Sam H.
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.17 no.1
    • /
    • pp.15-22
    • /
    • 2017
  • Although there are many efficient techniques to minimize the speed gap between processor and the memory, it remains a bottleneck for various commercial implementations. Since secondary memory technologies are much slower than main memory, it is challenging to match memory speed to the processor. Usually, hard disk drives include semiconductor caches to improve their performance. A hit in the disk cache eliminates the mechanical seek time and rotational latency. To further improve performance a divided disk cache, subdivided between metadata and data, has been proposed previously. We propose a new algorithm to apply the SSD that is flash memory-based solid state drive by applying FTL. First, this paper evaluates the performance of such a disk cache via simulations using DiskSim. Then, we perform an experiment to evaluate the performance of the proposed algorithm.

AN ADVACNCED DISK BLOCK CACHING ALGORITHM FOR DISK I/O SUB-SYSTEM

  • Jung, Soo-Mok;Rho, Kyung-Taeg
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.11 no.3
    • /
    • pp.43-52
    • /
    • 2007
  • A hard disk, which can be classified as an external storage is usually capacious and economical. In spite of the attractive characteristics and efforts on the performance improvement, however, the operation of the hard disk is apparently slower than a processor and the advancement has also been slowly conducted since it is based on mechanical process. On the other hand, the advancement of the processor has been drastically performed as semiconductor technology does. So, disk I/O sub-system becomes bottleneck of computer systems' performance. For this reason, the research on disk I/O sub-system is in progress to improve computer systems' performance. In this paper, we proposed multi-level LRU scheme and then apply it to the computer systems with buffer cache and disk cache. By applying the proposed scheme to computer systems, the average access time to disk blocks can be decreased. The efficiency of the proposed algorithm was verified by simulation results.

  • PDF

A Study on the Performance Characteristics of a Disk-type Drag Pump (원판형 드래그펌프의 성능특성에 관한 연구)

  • Hwang, Young-Kyu;Heo, Joong-Sik
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.643-648
    • /
    • 2001
  • The direct simulation Monte Carlo(DSMC) method is applied to investigate steady and unsteady flow fields of a single-stage disk-type drag pump. Two different kinds of pumps are considered: the first one is a rotor-rotor combination, and the second one is a rotor-stator combination. The pumping channels are cut on a rotor and stator. The rotor and stator have 10 Archimedes' spiral blades, respectively. In the present DSMC method, the variable hard sphere model is used as a molecular model, and the no time counter method is employed as a collision sampling technique. For simulation of diatomic gas flows, the Borgnakke-Larsen phenomenological model is adopted to redistribute the translational and internal energies. The DSMC results are in good agreement with the experimental data.

  • PDF

Vibro-acoustic Analysis for Predicting the Noise of HDD (하드디스크 드라이브 소음 예측을 위한 진동 음향 연계 해석)

  • 이상희;고상철;김준태;강성우;한윤식;황태연
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.103-108
    • /
    • 2001
  • The structure of hard disk drive(HDD) is excited by dynamic motion of a disk-spindle motor, and it makes sound noise. Therefore, the cover and the base of HDD should be designed to reduce noise and vibration induced by spindle motor. The prediction technique of sound pressure level(SPL) of a given structural shape enables us to design a cover and a base with much less vibration and noise. In this paper, we measured the force of disk-spindle motor and predicted SPL from HDD by computational simulation. To get a SPL of HDD by computational simulation, modal analysis and forced vibration analysis were performed with ANSYS, and sound radiation was computed using SYSNOISE. The calculated results were compared with experimental results and a good agreement was obtained. With this computer simulation procedure and design of experiment(DOE), optimal thickness of noise barrier and damper was calculated.

  • PDF

Numerical Simulation of a Protostar Flare Loop between the Core and Disk

  • ISOBE HIROAKI;YOKOYAMA TAKAAKI;SHIBATA KAZUNARI
    • Journal of The Korean Astronomical Society
    • /
    • v.34 no.4
    • /
    • pp.337-339
    • /
    • 2001
  • One-dimensional hydrodynamic modeling of a protostellar flare loop is presented. The model consists of thermally isolated loop connecting the central core and the accretion disk. We found that the conductive heat flux of a flare heated the accretion disk up to coronal temperature and consequently the disk is evaporated and disappeard. This effect may explain the ovserved feature of the repeated flare from the young stellar object YLW 15.

  • PDF

Study on the Closed-die Forging Process for Turbine Disk of Small Gas Turbine Engine (소형 가스터빈용 터빈 디스크의 형단조 공정 연구)

  • Kim, D.K.;Kim, Y.D.;Kim, D.Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.05a
    • /
    • pp.427-430
    • /
    • 2007
  • Gas turbine disk components have been used by Ni-base superalloys which have high temperature strength for enduring stress induced by high speed rotation. This study introduced the overview of development strategy of precision forging of turbine disk and closed-die forging process for manufacturing good quality gas turbine disk. To make superior quality turbine disk, it is important to select optimal forging process conditions like preform shape, die shape and forging temperature etc. In this paper, closed-die forging process has been studied through the rigid-plastic finite element simulation. Proposed forging process can be used for the successful manufacturing of small-size gas turbine disk.

  • PDF

Shock Analysis of Optical Disk Drives (광디스크 드라이브의 충격해석)

  • 홍석준;장영배;박노철;박영필
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.412-417
    • /
    • 2003
  • As optical disk drives become designed for portable and hostile environment, higher storage density and smaller size, optical disk drives have a possibility to miss the track and not to read the data. This paper presents the modeling of an optical disk drive as 3-DOF system. Optical disk drives are tested with a linear drop test device and their results are compared with simulation results in order to verify the shock analysis. Finally, this paper shows shock response of a optical disk drive with changes of parameters

  • PDF

Finite Element Analysis of Vibration of HDD Disk-Spindle System with Rigid Complex Spindle and Flexible Shaft (복잡한 형상의 강체 스핀들과 유연축을 고려한 HDD 디스크-스핀들 계의 고유진동 유한요소해석)

  • Lee, Sang-Hoon;Jang, Gun-Hee
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.784-789
    • /
    • 2000
  • Equations of motion are derived and solved using the finite element method substructure synthesis for the disk-spindle system with rigid spindle and flexible shaft. The disk is modeled as a flexible spinning disk by Kirchhoff plate theory and von Karman nonlinear strain. The spindle supporting the flexible disk is modeled as a rigid body to consider its complex geometry. The stationary shaft supporting the rotating disk-spindle-bearing system is modeled by Euler beam, and the ball bearings are modeled as the stiffness matrix with 5 degrees of freedom. Developed theory is applied to analyze the vibration characteristics of a 3.5" HDD and a 2.5" HDD, respectively, and modal tests are performed to verify the simulation results. This paper shows that the developed theory can be effectively applied to the rotating disk-spindle system with the spindle of complex shape.

  • PDF