• 제목/요약/키워드: Disinfection Process

검색결과 202건 처리시간 0.024초

간이상수도 자동소독 정수기의 개발 및 성능에 관한 연구 (Development and Performance of Water Purifier with the Auto-Disinfected on a simple Drinking Water)

  • 조병락;이배복;최명부
    • 한국산업융합학회 논문집
    • /
    • 제16권2호
    • /
    • pp.41-46
    • /
    • 2013
  • On the purpose of helping the inhabitants living in farming, fishing villages, and islands for more safe and hygienic water from simple waterworks, experimental investigations were performed concerning the development of a water purifier with silver nanomaterial packed, having a function of the auto-disinfection. The results show as follows through such filteration and auto-disinfection processes. It is possible to get hygienic and safe water, for example, more than 95% of general bacteria, total coliforms, and fecal coliforms were removed. It is also possible to get good-quality water, for 49.4% of spent potassium permanganate and 85% and 63% of turbidity and conductivity were removed respectively. It is a very effective equipment, for 100% cost reduction of used chemicals was achieved by no-chemical disinfection process and THM was not generated.

고농도 차아염소산나트륨 발생장치의 안정적 운영에 관한 연구 (A Study on the Stable Operation of High Sodium Hypochlorite Generation)

  • 조해진;나찬욱;고성호
    • 한국유체기계학회 논문집
    • /
    • 제20권2호
    • /
    • pp.69-74
    • /
    • 2017
  • Sodium hypochlorite, used as water disinfectant, is generated by electrolysis of salt. Compared to chlorine gas disinfection, it is free from high-pressure gas regulation and does not generate toxic gas, so it is increasingly used as a safe disinfectant. Despite these advantages, the concentration of sodium hypochlorite decreases with temperature during long-term storage, and the amount of chlorate increases when a large amount is added, it has mainly been applied to small-scale waterworks. To solve this problem, high sodium hypochlorite generation was developed. In this study, the changes of concentration and chlorate of sodium hypochlorite with time has been studied. As a result of the test, it was found that the usable period of sodium hypochlorite produced at a certain temperature or less was increased from 1.5 days to 13 days. Overall, sodium hypochlorite can be applied even in large-scale waterworks, which makes operation more stable and also reduces the disinfection byproducts, thus it contributed greatly to securing water quality.

Electrochemical dehalogenation of disinfection by-products and iodine-containing contrast media: A review

  • Korshin, Gregory;Yan, Mingquan
    • Environmental Engineering Research
    • /
    • 제23권4호
    • /
    • pp.345-353
    • /
    • 2018
  • This paper summarizes results of research on the electrochemical (EC) degradation of disinfection by-products (DBPs) and iodine-containing contrast media (ICMs), with the focus on EC reductive dehalogenation. The efficiency of EC dehalogenation of DBPs increases with the number of halogen atoms in an individual DBP species. EC reductive cleavage of bromine from parent DBPs is faster than that of chlorine. EC data and quantum chemical modeling indicate that the EC reduction of iodine-containing DBPs (I-DBPs) is characterized by the formation of active iodine that reacts with the organic substrate. The occurrence of ICMs has attracted attention due to their association with the generation of I-DBPs. Indirect EC oxidation of ICMs using anodes that produce reactive oxygen species can result in a complete degradation of these compounds yet I-DBPs are formed in the process. Reductive EC deiodination of ICMs is rapid and its overall rate is diffusion-controlled yet I-DBPs are also produced in this reaction. Further progress in practically feasible EC methods to remove DBPs, ICMs and other trace-level organic contaminants requires the development of novel electrocatalytic materials, elimination of mass transfer limitations via innovative design of 3D electrodes and EC reactors, and further progress in the understanding of intrinsic mechanisms of EC reactions of DBPs and TrOC at EC interfaces.

개질 Clay를 첨가한 응집공정에서의 자연유기물 제거 (Removal of NOM in a Coagulation Process Enhanced by Modified Clay)

  • 박지혜;이상윤;박흥석
    • 상하수도학회지
    • /
    • 제21권1호
    • /
    • pp.37-46
    • /
    • 2007
  • A feasibility test was conducted to evaluate the addition of turbidity substance in a coagulation process to remove natural organic matters (NOM), the precursor of disinfection by-products (DBPs). The experimental water sources were synthetic water containing 5 mg/L of humic acid and 50 mg/L of NaHCO3 and drinking water resource of Ulsan city (S Dam water, D Dam water and Nak-Dong raw water). The examined turbidity substances were kaolin, acid clay, and modified clay (0.38 meq $NH_4{^+}-N/g$ clay). In Jar tests at different concentrations of the turbidity substances (5, 10, 15, 20, 30 mg/L) using the synthetic water, the turbidity substances improved the removal of turbidity, UV-254 absorbance and dissolved organic carbon (DOC) by 23.8-38.1%, 17.0-24.5% and 2.5-44.5%, respectively. The modified clay showed higher removal efficiencies than other substances. In Jar tests using the drinking water, 10 and 20 mg/L of modified clay enhanced the removal efficiencies of turbidity, UV-254 absorbance, DOC, trihalomethane formation potential (THMFP), and haloacetic acid formation potential (HAAFP) by 3.0~4.3%, 19.1~29.0%, 12~34.9%, 4.9~36.7%, and 1.6~30.2%, respectively.

정수처리에서의 Peroxone ($O_3/H_2O_2$) 공정 (Peroxone ($O_3/H_2O_2$) Process in Drinking Water Treatment)

  • 손희종;염훈식;빈재훈
    • 대한환경공학회지
    • /
    • 제32권3호
    • /
    • pp.296-308
    • /
    • 2010
  • Peroxone 공정은 정수처리 공정에서 기존의 염소와 오존 공정들의 여러 가지 한계점들을 극복할 수 있는 공정이다. 과산화수소와 오존에 의해 생성되는 OH 라디칼은 다양한 유기성 오염물질들에 대해 빠른 산화분해 및 높은 제거효율을 나타낸다. Peroxone 공정을 운영하는데 있어 주요 과제는 OH 라디칼 생성을 저해시키는 또는 생성된 OH 라디칼을 소모시키는 scavenger들과 공존할 때 peroxone 공정의 효율을 높일 수 있는 방안을 강구하는 것이다. Bromate와 같은 무기성 산화 부산물의 생성을 최소화할 수 있는 방안과 peroxone 공정 처리 후 염소 소독시 생성되는 염소 소독부산물들의 생성을 보다 저감할 수 있는 방안에 대해서도 많은 연구가 필요하다. 또한, 수중에 잔류하는 과산화수소에 대한 문제이다. 잔류 과산화수소를 on-line으로 측정할 수 있는 정밀한 측정장비의 개발 및 보급이 우선되어야 peroxone 공정의 운영에 있어서 안전성이 확보될 수 있다. 이러한 과제들이 해결이 된다면 peroxone 공정은 보다 다양한 목적으로 정수처리에 효율적으로 적용될 수 있을 것이다.

염소 또는 오존을 이용한 항생제 내성 유전오염물질 제어 (The Antibiotic Resistant Gene Pollutant Controls using Chlorine or Ozone disinfection)

  • 김성표;유대환;오준식;조윤철
    • 한국습지학회지
    • /
    • 제13권3호
    • /
    • pp.697-705
    • /
    • 2011
  • 본 연구의 목적은 다제 항생제 내성특성을 가진 pB10을 함유한 Escherichia coli DH 5 alpha,(E.coli $DH5{\alpha}$)를 대상 미생물로 하여 염소와 오존의 살균효율을 비교하는 것이다. 또한 다제 내성플라스미드 pB10에 대한 염소와 오존에 의한 제거율을 조사하였다. 주입농도 대비 오존살균이 염소살균에 비해 약 1.2~1.4 배 정도 효율이 높게 나타났다. 또한 다제 내성플라스미드 pB10에 대한 제거 실험에서 오존에 의한 제거율이 염소보다 약 2~4배 높게 나타났다. 오존살균에 의한 높은 pB10 제거효율은 오존 살균시 발생하는 OH 라디칼에 의한 것으로 사료된다. 이러한 연구결과로부터 내성균 및 유전물질을 효과적으로 제어하기 위하여 기존 염소살균법에 오존 또는 광촉매산화와 같은 고급산화법을 연계처리에 대한 필요가 있을 것으로 판단된다.

하수 방류수 살균소독을 위한 무전극 UV 램프의 제조 및 특성 (Manufacturing and Characteristics of the Electrodeless UV Lamp for Disinfection of the Sewage Effluent)

  • 신동호;이용택
    • 공업화학
    • /
    • 제16권4호
    • /
    • pp.570-575
    • /
    • 2005
  • 하수방류수 살균 소독에 이용되는 UV 램프를 기존의 전극용보다 효율을 높이고 수명이 긴 무 전극 UV 램프를 제작하고 그 성능을 알아보았다. 우선 활성물질을 변화시키면서 제조한 램프의 UV 강도 및 온도의 변화를 실험 하였다. 그 결과 활성물질이 Hg/In의 무게비 95/5로 만든 램프를 250 min간 운전한 결과 UV 강도 $300{\mu}W/cm^2$ 및 온도 $200{\sim}250^{\circ}C$로 가장 안정적인 결과를 나타내었다. 그러나 무전극 램프를 장시간 발광시켰을 경우 램프의 온도가 상승하기 때문에 이를 방지하기 위해 실제 하수처리공정에 적용할 수 있는 냉각이 가능한 이중관 형태로 제작하여 UV 강도와 온도 변화특성을 알아보았다. 또한 제작된 무전극 UV lamp를 하수 방류수의 살균 소독을 위하여 대장균(E-coli.)으로 실험한 결과에서도 99.9% 이상의 살균효율을 보였다.

발라스트수 처리를 위한 전기화학적 살균처리 (Electrochemical Disinfection for Ballast Water Treatment)

  • 서원학;전선애;김지현;이태호;상병인
    • 대한환경공학회지
    • /
    • 제28권11호
    • /
    • pp.1162-1167
    • /
    • 2006
  • 대형선박에서 적절한 처리없이 배출되는 발라스트수에 의한 해양 생태계의 파괴가 최근 전세계적으로 환경오염 문제로 대두되고 있다. 그 결과, 국제해사기구(IMO)는 공해로 배출되기 전 발라스트수의 적절한 처리를 강제하는 국제협약을 시행할 예정이다. IMO의 발라스트수 처리 기준을 준수하기 위해, 여과, UV 자외선, 오존 처리 등과 같은 몇몇 공정들이 연구되고 있다. 발라스트수의 살균은 매우 짧은 수리학적 체류시간 내에 처리되어야 하기 때문에, 전기화학적 처리 공정은 우수한 공정이 된다. 불용성 전극을 이용한 전기화학적 처리 공정에서 미생물의 살균능은 낮은 pH조건하에 전류밀도와 체류시간이 증가함에 따라 증가하였다. 살균처리 후 미생물의 형상을 전자현미경과 광학현미경으로 관찰하여 전기화학적으로 미생물이 살균된 형태를 확인하였다.

다기능 금속산화물의 하수처리 적용-흡착 및 살균 (The application of multifunctional metal oxide for wastewater treatment: Adsorption and disinfection)

  • 김희곤;박덕신;안병렬
    • 상하수도학회지
    • /
    • 제33권4호
    • /
    • pp.251-258
    • /
    • 2019
  • The physical treatment such as chemical precipitation or adsorption was usually added after biological treatment in wastewater treatment process since it was enforced to reduce the concentration of phosphate for wastewater effluent to 0.2 mg/L as P which was well known as one of main nutrient causing eutrophication in waterbody. Therefore, the new material functioned for both adsorption and disinfection was prepared with Fe and Cu, and $TiO_2$, respectively, by changing the ratio of concentration referred to tri-metal (TM). According to SEM-EDS, $TiO_2$ was 30~40% composition for any TM regardless of any synthesis condition. However, the ratio of composition for Fe and Cu was dependent on the initial Fe and Cu concentration, respectively. The removal efficiency of phosphate was obtained to 15% at low initial concentration and the maximum uptake (Q) was calculated to ~11 mg/g through Langmuir isotherm model using TM1 which was synthesized at 1000 mg/L, 1000 mg/L, and 2 g (10 g/L) for $Fe(NO_3)_3$, $Cu(NO_3)_2$, $TiO_2$, respectively. In disinfection test, the efficiency of virus removal using TM was increased with increase of dosage of TM and can be reached 98% at 0.2 g.

Development of an Automated Measurement System for Dilution Process and Spraying Amount of Disinfectant

  • Kim, Jung-Chul;Chung, Sun-Ok;Cho, Byoung-Kwan;Chang, Hong-Hee;Kim, Suk;Chang, Dongil
    • Journal of Biosystems Engineering
    • /
    • 제38권4호
    • /
    • pp.228-239
    • /
    • 2013
  • Purpose: The objectives of this study were to develop an automated disinfectant dilution system, and an automated data management system for spraying amount for resolving uncertainty problem. Methods: Proper diluting rate was made by a controlled volume pump for liquid disinfectant and a screw conveyer pump for solid disinfectant. The water capacity of disinfecting system of 400 L was controlled by two water level sensors. The water quantity of water tank was controlled by the signals which were produced by the water level sensors. Signals were processed by Labview Programming, and ON/OFF of solenoid valve that was used for controlling water supplying to water tank, was controlled by SSR. The operating time of pumps for disinfectant was controlled quantitatively. A turbine flowmeter was used for development of automated measurement system for spraying amount of disinfectant. In order to save the flowmeter data and to control the spraying system, a multi-function data logger was used, and it was processed and saved in Excel file by a program developed in this study. Results: Labview 2010 was used for programming to control the automated measurement system for spraying amount of disinfectant. Results showed that the relationship between flowmeter value and time had a significant linear relationship such as 0.99 of $R^2$. Generally, 6.74 L/s of diluted disinfectant is sprayed for a vehicle passing through the disinfection system (about 15 seconds). Test results showed that average error between the measured spraying amount and the flowmeter data was 50 mL, and the range of error was 1.3%. Since the amount and time of spraying could be saved in real-time by using the spreadsheet files which could not be modified arbitrarily, it made possible to judge objectively whether the disinfection spraying was performed or not. Test results of spraying liquid and solid disinfectant showed that the errors between the measured discharge rate and the theoretical one were ranged within 3-4% for various dilution rates. Conclusions: The disinfection system developed would be working accurately. The automated spraying data base management system satisfied the purpose of this study. The automated dilution process system developed in this study could discharge liquid and solid disinfectant with accurate dilution rate, relatively.