• 제목/요약/키워드: Disinfection Process

검색결과 198건 처리시간 0.033초

Disinfection and Reactivation of Microorganisms after UV Irradiation for Agricultural Water Reuse of Biofilter Effluent

  • Jung, Kwang-Wook;Yoon, Chun-G.;Hwang, Ha-Sun;Ham, Jong-Hwa
    • 한국농공학회지
    • /
    • 제45권7호
    • /
    • pp.94-106
    • /
    • 2003
  • A pilot study was performed to examine the feasibility of UV disinfection system and the reactivation of indicator microorganisms (TC, FC, E. coli) after UV irradiation for agricultural reuse of reclaimed water. Photoreactivation and dark repair enable UV-inactivated microorganisms to recover and may reduce the efficacy of UV inactivation, which might be drawbacks of the UV disinfection method. The effluent of biofilter for 16-unit apartment house was used as input to the UV disinfection system, and average SS and BOD concentration were 3.8 and 5.7 mg/L, respectively, and the mean level of total coliform was in the range of $1.0\times10^4$ MPN/100mL. UV disinfection was found to be effective and it reduced mean concentration of indicator microorganisms (total coliform, fecal coliform, and E. coli) to less than 100 MPN/100mL within 60s exposure using 17, 25, and 40W lamps. Two UV doses of 6 and 16 mW$\cdot$s/$\textrm{km}^2$ were applied and microorganisms reactivation was monitored under the dark, photoreactivating light, and solar irradiation. Microorganisms reactivation was observed in the UV dose of 6 mW$\cdot$s/$\textrm{km}^2$, and numbers increased up to 5% at the photoreactivating light and 1% at the dark. However, microorganisms were inactivated rather than reactivated at the solar radiation and numbers decreased to non-detectible level about below 2 MPN/100mL in 4 hours. In the case of 16 mW$\cdot$s/$\textrm{km}^2$, microorganism reactivation was not observed indicating that UV dose might affect the reactivation process such as photoreactivation and dark repair. Therefore, concerns associated with microorganism reactivation could be controlled by sufficient UV dose application. Agricultural reuse of reclaimed water might be even less concerned due to exposure to the solar irradiation that could further inactivate microorganisms. The pilot study result is encouraging, however, sanitary concern in water reuse is so critical that more comprehensive investigation is recommended.

EFFECTS OF H2O2, TURBIDITY AND METALS ON SONOCHEMICAL DECOMPOSITION OF HUMIC SUBSTANCES IN WASTEWATER EFFLUENT

  • Kim, Il-Kyu
    • 한국물환경학회지
    • /
    • 제18권3호
    • /
    • pp.271-282
    • /
    • 2002
  • The sonochemical process has been applied as a treatment method to investigate its effect on the decomposition of humic substances (HS). The reaction kinetics and mechanisms in the process of sonochemical treatment for humic substances in wastewater have also been discussed. It was observed that the metal ions such Fe(II) and Mn(II) showed catalytic effects, while Al(III), Ca(II), and Mg(II) had inhibitory effects on the decomposition of humic substances in sonochemical reaction with hydrogen peroxide. Experimental results also showed factors such as hydrogen peroxide dose affected the formation of disinfection by-products. Two trihalomethanes, chloroform and dichlorobromomethane were formed as major disinfection by-products during chlorination. The depolymerization and the radical reaction of HS radicals appear to occur simultaneously. The final step of the reaction is the conversion of organic acids to carbon dioxide.

염소 및 오존소독시 정수처리공정별 소독부산물 발생 변화 (DBPs Variation by Chlorination and Preozonation in Drinking Water)

  • 김준성;최용욱;정용
    • 한국물환경학회지
    • /
    • 제21권6호
    • /
    • pp.676-681
    • /
    • 2005
  • This study was researched for disinfection by-products (DBPs) by preozonation, prechlorination and/or postchlorination. DBPs including trihalomethanes (THMs), haloacetic acids (HAAs), halonitriles, and aldehydes were analyzed by the treatment steps of prechlorination, preozonation, sedimentation, filtration, and postchlorination comparatively. THMs were detected as $52.20{\mu}g/L$ after prechlorination and decreased during sedimentation and filtration process. The HAAs and aldehydes increased more during preozonaiton than prechlorination. However, chlorinated DBPs and aldehydes increased more by postchlorination. Chlorinated DBPs formed by preozonation increased 26% more than the chlorination process. If aldehydes were included in the total DBPs, DBPs increased up to 39% by preozonation. Preozonation could increase the removal efficiency of organic carbon during the coagulation and sedimentation processes. Ozonation might produce aldehydes that are not permitted for drinking water regulations. Also, DBPs were produced by preozonation than by chlorination. These results would bring a need for alternative disinfection studies to decrease DBPs.

A Study on the Characteristics of Natural Organic Matter and Disinfection By-Product Formation in the Juam Reservoir

  • Shin, Dae-Yewn;Moon, Ok-Ran;Yoon, Mi-Ran;Kim, Nam-Joung;Kang, Gang-Unn;Seo, Gwang-Yeob
    • 한국환경보건학회:학술대회논문집
    • /
    • 한국환경보건학회 2005년도 국제학술대회
    • /
    • pp.259-262
    • /
    • 2005
  • This study aims to identify the relationship between characteristics of aqueous organic matter and chlorination by-products formation potential according to temporal effect of Juam reservoir in Sun-Choen. The molecular weight distribution and chemical composition of precursors and their relationship with disinfection by-products(DBPs) were investigated. Most of the organic matters was responsible for the major DBP precursors in the raw water are small compounds with a molecular weight less than IKDa, Aromatic contents determined by SUVA correlated well with DBPs, THMs, and HAAs formation. Especially, THMFP/DOC showed better correlation with SUVA than HAAFP/DOC and DBPFP/DOC with SUVA in Juam reservoir. Therefore, effective removal of small molecules or hydrophobic organic matter prior to disinfection process will significantly reduce the DBP concentration in the finished water.

  • PDF

Hydrothermal Process에 의해 제조된 광촉매를 이용한 Giardia의 살균

  • 유미진;류천수;김문선;김병우
    • 한국생물공학회:학술대회논문집
    • /
    • 한국생물공학회 2000년도 추계학술발표대회 및 bio-venture fair
    • /
    • pp.445-446
    • /
    • 2000
  • Disinfection of pathogenic protozoa Giardia has been done by using $TiO_2$ prepared by hydrothermal process. $TiO_2$ suspended in a photoreactor or immobilized on the optical-fiber surface immersed in a photoreactor has been applied with the ultraviolet light. It has been shown that disinfection effect with $TiO_2/UV$ system 2 times as that with only the UV light and disinfection capability of Giardia increased with an increased $TiO_2$ concentration up to 0.1g/L in a $suspended-TiO_2$ reactor.

  • PDF

벼 종자소독 전 침종에 따른 소독효과 및 효율성 향상 (Improving Efficiency and Effectiveness of Disinfection by Soaking Seeds before Rice Seed Disinfection)

  • 윤여태;정종태;김규철;김병련
    • 한국작물학회지
    • /
    • 제67권3호
    • /
    • pp.137-146
    • /
    • 2022
  • 벼 종자소독은 키다리병 경감을 위해 필요한 과정으로 소독의 효과를 높이기 위해 30℃의 고온에서 수행하고 있다. 하지만, 벼 종자소독(30℃에서 48시간)을 마친 종자는 유아의 길이가 파종하기에 짧아 적당한 유아의 길이가 될 때까지 추가적인 침종작업이 필요한데, 품종별로 유아의 생장속도가 달라 농민들은 수온을 조절하고 유아의 길이를 확인해야 하는 번거로운 농작업으로 생각하고 있다. 따라서 키다리병 방제효과를 높이면서 종자소독 후 즉시 파종이 가능한 소독방법을 개발하고자 본 연구를 수행하게 되었다. 벼 종자소독 전 찬물에 2일간 종자를 침종하고 고온으로 종자소독(30℃ 48시간) 하면 파종하기 적당한 유아의 길이(1 mm 내외)가 되었고, 관행 대비 성묘율은 차이가 없으면서 키다리병은 64% 감소하는 결과를 보였다. 종자를 찬물에 침종 후에 소독하는 새로운 소독 방법이 키다리병 방제효과가 높은 이유를 구명하기 위해, 메틸렌블루 염색약을 이용하여 침종처리한 종자와 침종처리 하지 않은 종자를 염색한 결과 침종처리한 종자는 내부 및 외부 배유의 약 50%가 염색되었다. 따라서 종자소독 전 침종처리를 하면 소독약이 종자 내부의 배유까지 흡수되므로 내부에 있는 키다리병 포자까지 효과적으로 살균하기 때문으로 판단된다. 결론적으로 새롭게 개발된 소독방법은 종자소독 전 2일간 찬물로 침종처리 하면, 관행 방법 대비 침종작업시 수온을 고려하지 않아도 되고 벼 품종과 소독약 종류에 상관없이 유아의 길이는 1 mm 내외가 되어 농작업의 효율성을 높일 수 있으며 키다리병 발생을 관행대비 감소시킬 수 있어 농업현장에서 유용하게 사용될 것이다.

소독부산물 최소화를 위한 운영조건 연구 (Operating Conditions for Minimization of DBPs (Disinfection by-Products) in Drinking Water Supply System)

  • 신형순;최필권;김종수;최일우;김상훈;김태현;이경희;이수문;장은아;정연훈;김주열
    • 상하수도학회지
    • /
    • 제19권3호
    • /
    • pp.330-337
    • /
    • 2005
  • This study was carried out to propose the managemental improvement of the purification plants and the distribution facilities which can minimize the formation of disinfection by-products in drinking water distribution system. The disinfection by-products were highly created in the water treatment plant that the organic matters were high and the chlorine dosage was excessive. The concentration of DSPs was shown the highest value in August and the lowest value in December, because of temperature and pre-chlorine dosage effect. From the result of tracer test, the travel time from the treatment plant to the end of pipeline was around 3-4 days in summer, 5-6 days in winter, respectively, and the DSPs concentration of the reservoir(end of pipe) was 2-3 times higher than that of the beginning point. The improvement of the chlorination process and structural reformation of distribution facility was demanded to minimize the DSPs increase from purification plant to the end of pipe.

배양조류의 염소소독에 의한 클로로포름 생성특성 연구 (Formation of Chloroform from Algal Cell Cultures by Chlorination)

  • 김학철;최일환
    • 환경위생공학
    • /
    • 제24권2호
    • /
    • pp.40-48
    • /
    • 2009
  • Unusual bloom of toxic cyanobacteria in water bodies have drawn attention of environmentalists world over. Major bloom of Anabaena, Microcystis in water storage reservoir, rivers and lake leading to adverse health effects have been reported from Australia, England and many part of the world. These cyanobacterial cells can release intercellular matter like toxin in water and these intercellular matter can increase the concentration of organic matter. Cellysis can occur when algal cells meet the disinfectants like chlorine in water treatment plant and the resultant rising up of DOC(Dissolved Organic Carbon) or TOC(Total Organic Carbon) can increase the formation of disinfection by products. Disinfectants that kill microorganisms react with the organic or inorganic matter in raw water. In general disinfectants oxidize the matter in raw water and the resultant products can be harmful to human. There are always conflict about which is more important, disinfection or minimizing disinfection by products. The best treatment process for raw water is the process of the lowest disinfection by products and also the the lowest microorganism. In this study the cultured cells, Microcytis Aeruginosa(MA), Anabaena Flos-aquae(AF), Anabaena Cylindrica(AC), and the cells obtained in Daechung Dam(DC) whose dominant species was Anabaena Cylindrica were subjected to chlorination. Chlorination oxidizes inorganic and organic compounds and destruct live cells in raw water. Chloroform was analyzed for the cultured cells which were treated with $20mg/\ell$ dose of chlorine. In general chloroform is easily formed when dissolved organic matter react with chlorine. The cultured cells contributes the concentration of dissolved organic carbon and also that of total organic carbon which might be potent precusors of chloroform formed. The correlations of the concentration of chloroform, DOC and TOC were investigate in this study.

전산유체를 활용한 정수공정에서 후염소 투입공정 최적설계 방안 (Most suitable design method of post-chlorination process in portable water process by using CFD)

  • 조영만
    • 상하수도학회지
    • /
    • 제27권3호
    • /
    • pp.331-337
    • /
    • 2013
  • Post-chlorination for disinfection in portable water process is final process. The design factors of post-chlorination are inflow pipe line from tank of filtrated water to cleanwell, injection point of chlorine, appropriate shape of baffle in cleanwell for disinfection efficient improvement. Until now, we did not have the design standard for post-chlorination. we evaluated most suitable design method of post-chlorination process in portable water process by using computational fluid dynamics in this research. We found the result that the pipe to connect the cleanwell should be one. If pipe line split into two or more, uniform distribution of the flow is difficult. Second, optimal injection point of chlorine is the middle of pipe line to connect the cleanwell. Therefore, it is not economical to install chlorine contact basin in cleanwell. Third, the shape of baffle should be designed in order to water flows in one direction. And we found that it is better to design the low number of flow turning.

상온대기압 질소 및 공기 플라즈마가 의치상용 레진의 표면 특성과 살균효과에 미치는 영향 (Effect of non-thermal atmospheric pressure nitrogen and air plasma on the surface properties and the disinfection of denture base resin)

  • 서혜연;유은미;최유리;김수화;김광만;김경남
    • 한국치위생학회지
    • /
    • 제14권5호
    • /
    • pp.783-788
    • /
    • 2014
  • Objectives : The purpose of this study was to investigate the effect of non-thermal atmospheric pressure plasma jet(NTAPPJ) on surface properties and Streptococcus mutans disinfection of denture base resin. Methods : Self-cured denture base resin (Jet denture repair resin, Lang dental Mfg, co., USA) was used to make specimen($12mm{\times}2mm$). To observe surface change before and after plasma process, surface roughness and contact angle were measured. For sterilization experiments, the surfaces of specimens were treated with nitrogen and air NTAPPJ for 1 minute after S. mutans was inoculated on the material surfaces. Results : Before plasma process, surface roughness of denture base resin was $0.21{\mu}m{\pm}0.02{\mu}m$. After air and nitrogen NTAPPJ process, surface roughness was $0.19{\mu}m{\pm}0.03{\mu}m$ and $0.18{\mu}m{\pm}0.01{\mu}m$ respectively. There was no significant difference(p>0.05). Contact angle of control group without plasma process was $83.81^{\circ}{\pm}3.14^{\circ}$, while after plasma treatment, contact angles of air NTAPPJ and nitrogen NTAPPJ groups were $63.29^{\circ}{\pm}2.27^{\circ}$ and $46.68^{\circ}{\pm}5.82^{\circ}$ respectively. The result showed a significant decrease in contact angle after plasma process(p<0.05). Compared to the control group 6020.33(CFU/mL) without plasma process, CFU decreased significantly after air NTAPPJ 90.75(CFU/mL) and nitrogen NTAPPJ 80.25(CFU/mL) treatment(p<0.05). Conclusions : It was considered that NTAPPJ can be used for denture disinfection without changing surface properties of materials.