• 제목/요약/키워드: Disinfection By-Products (DBPs)

검색결과 69건 처리시간 0.023초

Removal of haloacetonitrile by adsorption on thiol-functionalized mesoporous composites based on natural rubber and hexagonal mesoporous silica

  • Krueyai, Yaowalak;Punyapalakul, Patiparn;Wongrueng, Aunnop
    • Environmental Engineering Research
    • /
    • 제20권4호
    • /
    • pp.342-346
    • /
    • 2015
  • Haloacetonitriles (HANs) are nitrogenous disinfection by-products (DBPs) that have been reported to have a higher toxicity than the other groups of DBPs. The adsorption process is mostly used to remove HANs in aqueous solutions. Functionalized composite materials tend to be effective adsorbents due to their hydrophobicity and specific adsorptive mechanism. In this study, the removal of dichloroacetonitrile (DCAN) from tap water by adsorption on thiol-functionalized mesoporous composites made from natural rubber (NR) and hexagonal mesoporous silica (HMS-SH) was investigated. Fourier-transform infrared spectroscopy (FTIR) results revealed that the thiol group of NR/HMS was covered with NR molecules. X-ray diffraction (XRD) analysis indicated an expansion of the hexagonal unit cell. Adsorption kinetic and isotherm models were used to determine the adsorption mechanisms and the experiments revealed that NR/HMS-SH had a higher DCAN adsorption capacity than powered activated carbon (PAC). NR/HMS-SH adsorption reached equilibrium after 12 hours and its adsorption kinetics fit well with a pseudo-second-order model. A linear model was found to fit well with the DCAN adsorption isotherm at a low concentration level.

D 정수처리장에서 소독부산물 발생 및 종분포 특성 (The Characteristics of Disinfection by-products Occurrence and Speciation in D Water Treatment Processes)

  • 김성준;김종민;전용태;박종은;원찬희
    • 한국물환경학회지
    • /
    • 제26권3호
    • /
    • pp.406-412
    • /
    • 2010
  • Concentrations and speciations of Trihalomethanes (THMs) and Haloacetic acids ($HAA_5$) that can be formed during chlorine disinfection by-product (DBPs) in full-scale drinking water treatment plants were investigated. Jeon-ju D water treatment plant that adopted conventional water treatment processes was chosen for investigation. SUVA values according to water treatment process changes were observed from 1.3 to 2.1. The process average concentrations of THMs was 7.4 ppb, 9.0 ppb and 14.7 ppb respectively, while the average concentrations of $HAA_5$ by each process which are precipitation water, filterater water, treated water, were 15.5 ppb, 14.9 ppb and 25.8 ppb respectively. DBPs concentrations was lower in the winter than summer. The major species of THMs was chloroform and the second highest was bromodichloromethane (BDCM) and the third highest was dibromochloromethane (DBCM). In case of $HAA_5$, the rate of trichloroacetic acid (TCAA) was detected. The species disribution of THMs is related to the change of SUVA and species disribution of $HAA_5$ is related to the concentrations of bromine and injection position of chlorine and injection quantity.

정수처리공정에서 조류유래 유기물질의 제거 (Removal of Algogenic Organic Matter in Drinking Water Treatment Process)

  • 박세진;차일권;윤태일
    • 대한환경공학회지
    • /
    • 제27권4호
    • /
    • pp.377-384
    • /
    • 2005
  • 조류는 호소의 부영양화 현상을 발생시킬 뿐 아니라 전반적인 정수처리공정에 많은 문제를 야기 시키고 있다. 그 중에서도 조류 세포와 조류유래 유기물질(Algogenic Organic Matter; AOM)은 휴믹물질처럼 염소 소독 시 유해성 물질인 소독부산물질(Disinfection By-Products; DBPs)을 형성하는 전구물질이다. 본 연구는 전 염소처리와 응집공정에 의한 조류유래 유기물질의 제거특성 변화를 확인하였으며, 또한 부영양화된 호소수 처리 공정으로 철(III)을 이용한 고도응집공정과 UV산화 공정의 적용성을 평가하였다. 전 염소처리공정은 조류제거에는 효과적이지만 수중의 DOC(Dissoluble Organic Carbon)농도와 TMHs(Trihalomethanes) 생성량을 증가시켰다. 응집실험에서는 응집 반응 pH가 조류유래 유기물질과 소독부산물질 제거에 있어 중요한 인자로 작용하였으며, 중성 pH에서 보다 낮은 반응 pH 5에서 DOC, THMs 제거율이 각각 50%와 28% 향상되었다 조류유래 유기물질과 THMs제거에 있어 UV 산화 공정을 적용한 결과, $UV/H_2O_2/Fe^{3+}$ 공정이 가장 효과적이었지만, 반응 pH를 조정한 고도응집공정보다는 효과적이지 않았다.

수돗물 병입수 중 염소소독부산물 및 aldehyde의 발생 특성 (Characteristics of Chlorination Byproducts and Aldehyde Occurrence in Bottled Tap Water)

  • 이연희;박주현;김현구;안경희;김태승;김동훈;권오상
    • 한국물환경학회지
    • /
    • 제28권5호
    • /
    • pp.754-761
    • /
    • 2012
  • Several drinking water treatment plants (DWTPs) produce the bottled tap waters (BTWs) as pilot production and provide them for noncommercial use. In 2008, acetaldehyde and chloral hydrate were detected in some BTWs and the public worry over the safety of the water. In this study, the BTWs produced from 7 DWTPs were tested for 13 chemicals including disinfection byproducts (DBPs). The level of four trihalomethanes (THMs) were increased up to 15 days. The average concentration of them was 0.0075 mg/L at the time of bottling and it was increased to 0.0214 mg/L after 15 days. The average acetaldehyde concentration was 0.0406 mg/L at the time of bottling but it was went up to 0.2251 mg/L after 11 days and then decreased. Although the initial concentrations of DBPs were below the drinking water standard, we also traced them at different storage conditions. Temperature affected the formations of THMs and acetaldehyde concentrations significantly. While the average concentration of THMs ranged from 0.0113 to 0.0182 mg/L at $25^{\circ}C$, it was increased to 0.0132 ~ 0.0256 mg/L at $50^{\circ}C$. In case of acetaldehyde, concentration ranged from 0.0901 to 0.2251 mg/L at $25^{\circ}C$, it was increased to 0.3394 ~ 1.0591 mg/L at $50^{\circ}C$. Throughout the tests with 7 BTWs samples, none of the chemicals was exceeded the drinking water standard of Korea. Therefore, it is recommended to avoid the exposure of BTWs to sunlight or high temperature during distribution and storage.

정수장에서 소독부산물의 생성특성 (Formation Characteristics of DBPs by Chlorination in Water Treatment Plant)

  • 이동석;민병섭;박선구;김정화;류재근
    • 한국물환경학회지
    • /
    • 제20권1호
    • /
    • pp.55-62
    • /
    • 2004
  • This study was carried out to investigate the formation of DBPs(Disinfection By-products) such as trihalomethane(THMs) and haloacetic acid(HAAs) by chlorination in raw water and finished water of Water Treatment Plant(WTP). The formation of THMs was increased with the increase of pH and reaction time. HAAs was found as a high formation at a pH 7 and low formation at pH 9. THMFP(Trihalomethane Formation Potential) was the highest formation potential in raw water of Pu-1 and the lowest in raw water of Pa-1. In case of HAAFP(Haloacetic acid formation potential), So-1 showed the highest value, while Pa-1 showed the lowest value. It was investigated the relationship between HAAs and organic matters which were described as DOC(dissolved organic carbon) and $UV_{254}$. In both DOC and $UV_{254}$ versus HAAFP, Pu-1 showed the good correlation coefficients($r^2$) with 0.95 and 0.84, respectively. For three WTP investigated, DBPs(THMs + HAAs) was shown over the range of $42.00{\sim}49.36{\mu}g/L$. This result might be due to the different characteristic of organic matters in raw water and the difference of chlorine dosage for a water treatment.

Comparative risk analysis for priority ranking of environmental problems in Seoul

  • Kim, Ye-Shin;Lee, Yong-Jin;Park, Hoa-Sung;Lim, Young-Wook;Shin, Dong-Chun
    • 한국환경독성학회:학술대회논문집
    • /
    • 한국환경독성학회 2003년도 추계국제학술대회
    • /
    • pp.169-169
    • /
    • 2003
  • In Korea, there is no CRA studies and has not well known CRA and not well established their methodologies. Therefore, objectives of this study is to establish the framework of CRA consisting of health risk, economic risk and perceived risk and the detail methodologies of three main component of estimating and comparing those risks for on the three environmental problems of air pollution, indoor air pollution and drinking water contamination which being subjective to the eight sub-problems of hazardous ai. pollutants (HAPs), regulated pollutants (representative as PM10) and Dioxins (PCDDS/ PCDFs) in air pollution, and indoor ai. pollutants (IAPs) and Radon in indoor air pollution, and drinking water pollutants (DWPs), disinfection-by- products(DBPs) and radionuclides in drinking water contamination in Seoul, Korea. And then, their problems set priorities by individual and integrated risk. As a results, ranking of health risk were the following order of indoor air pollution, air pollution and then drinking water contamination, in three environmental problems and of radon, PM10, IAPs, HAPs, DWPs, Dioxins, DBPs, and then radionuclides in eight sub-problems. And that of economic risk were the same order. In the contrary, ranking of perceived risk were the following order of air pollution, drinking water contamination, and then indoor air pollution, and of HAPs, Dioxins, radionuclides, PM10, DWPs, IAPs, Radon and then DBPs.

  • PDF

Handspace Solid Phase Microextraction 방법에 의한 HANs 분석에 관한 연구 (Analysis of Haloacetonitriles in Drinking Water Using Headspace-SPME Technique with GC-MS)

  • 조덕희
    • 상하수도학회지
    • /
    • 제18권5호
    • /
    • pp.628-637
    • /
    • 2004
  • In many drinking water treatment plants, chlorination process is one of the main techniques used for the disinfection of water. This disinfecting treatment leads to the formation of disinfection by-products (DBPs) such as haloacetonitriles (HANs), trihalomethanes (THMs), haloacetic acids (HAAs). In this study, headspace-solid phase microextraction (HS- SPME) technique was applied for the analysis of HANs in drinking water. The effects of experimental parameters such as selection of SPME fiber, the addition of salts, magnetic stirring, extraction temperature, extraction time and desorption time on the analysis were investigated. Analytical parameters such as linearity, repeatability and detection limits were also evaluated. The $50/30{\mu}m$-divinylbenzene/carboxen/polydimethylsiloxane fiber, extraction time of 30 minutes, extraction temperature of $20^{\circ}C$ and desorption time of 1 minute at $260^{\circ}C$ were the optimal experimental conditions for the analysis of HANs. The correlation coefficients ($r^2$) for HANs was 0.9979~0.9991, respectively. The relative standard deviations (%RSD) for HANs was 2.3~7.6%, respectively. Detection limits (LDs) for HANs was $0.01{\sim}0.5{\mu}g/L$, respectively.

수영장 활동공간 내 유해인자 노출특성 연구 (Characteristics of Exposure Distribution to Hazard Factors in Indoor Swimming Pool Activity Areas in Gwangju)

  • 이윤국;김난희;최영섭;김선정;박주현;강유미;배석진;서계원;김종민
    • 한국환경보건학회지
    • /
    • 제46권2호
    • /
    • pp.150-158
    • /
    • 2020
  • Objective: This study is designed to measure the concentration of DBPs (disinfection by-products) in pool water and in air and to estimate the carcinogenic potential through the evaluation of inhalation exposure. Methods: The subjects were six indoor swimming pools with many users in Gwangju. Samples of pool water and indoor air were taken every one month from August 2018 to August 2019 and analyzed for eight swimming pool standards. Three-liter air samples were collected and the VOCs were analyzed using GC/MS directly connected to thermal desorption. Results: pH was 6.8-7.5 and the concentration of free residual chlorine in pool water was 0.40-0.96 ?/ℓ. Physicochemical test items such as KMnO4 consumption and heavy metal items such as Aluminum met existing pool hygiene standards. No VOC materials were detected except for the DBPs. The concentration of THMs in the pool water was 11.05-41.77 ㎍/L and the THMs mainly consist of Chloroform (63-97%) and BDCM (3-31%). The concentration of indoor air THMs is 13.24-32.48 ㎍/㎥ and consists of Chloroform. The results of carcinogenic assessment of chloroform in the indoor swimming pool via inhalation exposure were 2.0 to 6.4 times higher than the 'acceptable risk level' suggested by the US EPA. Conclusions: The concentration of THMs in the pool water is 11.05-41.77 ㎍/L, most of which is chloroform. In addition, the concentration of indoor air THMs is 13.24-32.48 ㎍/㎥. The result of carcinogenic assessment of chloroform was 2.0 to 6.4 times higher than the 'acceptable risk level' suggested by the US EPA.

음용수내 발암물질인 염소 소독부산물의 전기화학적 제거 특성 (Electrochemical Removal Characteristics of Disinfection By-products by Chlorination in Drinking Water)

  • 권순우;이종대;신장식
    • 한국응용과학기술학회지
    • /
    • 제21권4호
    • /
    • pp.364-369
    • /
    • 2004
  • It has been confirmed that some Trihalomethanes (THMs) suspected as carcinogens, can be formed during chlorination for water supply through the reaction of chlorine and humic substances in water. The electrochemical characteristics on activated carbon fiber filter (ACF) electrode were investigated to remove the THMs in the chlorination process of drinking water. The electrochemical removal efficiency depended on the applied voltage and flow rate. In this study, the best result showed that the removal efficiency of THMs was higher than 99%.

이염화이소시아뉼산나트륨(NaDCC) 주입 선박평형수 처리기술의 해양생태위해성평가에 대한 연구 (A Study on Marine Ecological Risk Assessment of Ballast Water Management Technology Using the Sodium Dichloroisocyanurate (NaDCC) Injection Method)

  • 김태원;문창호;박미옥;전미해;손민호
    • 해양환경안전학회지
    • /
    • 제24권2호
    • /
    • pp.203-214
    • /
    • 2018
  • 이염화이소시아뉼산나트륨(NaDCC) 주입 선박평형수처리설비(BWMS, ballast water treatment system)에 의해 처리된 배출수 내에는 브롬 및 염소계열의 활성물질과 소독부산물질(DBPs, disinfection by-products)들이 포함되어 있다. 본 연구에서는 NaDCC로 처리된 선박평형수가 해양환경에 미치는 생태위해성을 파악하기 위하여 생태독성시험(WET test, whole effluent toxicity test)과 생태위해성평가(ERA, ecological risk assessment)를 수행하였다. 배출수독성 시험종은 규조류(Skeletonema costatum, Navicula pelliculosa), 녹조류(Dunaliella tertiolecta, Pseudokirchneriella subcapitata), 로티퍼(Brachionus plicatilis, Brachionus calyciflorus) 및 어류(Cyprinodon variegatus, Pimephales promelas)로 8개의 해양 및 담수종을 이용하였다. 생태독성시험결과, 규조류 및 녹조류를 이용한 성장저해시험에서만 명확한 독성영향이 나타났으며 해수의 시험 조건에서 무영향농도(NOEC, no observed effect concentration), 최저영향농도(LOEC, lowest observable effect concentration) 및 반수영향농도(EC50, effect concentration of 50 %)는 각각 25.0 %, 50.0 % 및 > 100.0 %로 가장 민감한 영향을 나타냈다. 하지만 로티퍼 및 어류를 이용한 독성시험의 경우 모든 염분 구간에서 독성영향이 나타나지 않았다. 한편, 배출수에 대한 화학물질분석결과, bromate, isocyanuric acid, formaldehyde, chloropicrin과 trihalomethanes (THMs), halogenated acetonitriles (HANs), halogenated acetic acid (HAAs) 등 총 25개의 소독부산물질들이 검출되었다. ERA결과, 25개의 소독부산물질들 중, 지속성(P), 생물축척성(B) 및 생물독성(T)의 특성을 모두 보이는 물질은 없었다. 예측환경농도(PEC, predicted environmental concentration) / 예측무영향농도(PNEC, predicted no effect concentration) 비율은 일반적인 항구 환경에서는 모든 물질이 1.0을 초과하지 않았지만 선박 최 인접지역의 경우 Isocyanuric acid, Tribromomethane, Chloropicrin 및 Monochloroacetic acid가 1.0을 초과하여 위해성이 있을 것으로 나타났다. 하지만 실제 배출수를 이용한 생태독성시험결과의 NOEC (25.0 %)를 적용한 결과 NaDCC로 처리된 선박평형수가 해양에 배출되었을 때 선박 최 인접지역을 포함한 일반적인 항구 환경에 수용 불가한 생태위해성을 가지지 않는 것으로 판단된다.