• 제목/요약/키워드: Disease Network

검색결과 842건 처리시간 0.031초

신경망을 이용한 생활습관성 질환 시스템 설계 (Design of Life Habits Disease System using Neural Network)

  • 이영호;정경용;강운구
    • 디지털융복합연구
    • /
    • 제10권6호
    • /
    • pp.1-6
    • /
    • 2012
  • 현대사회는 IT융합기술의 발달로 정보의 양이 급속도로 늘어나고 있으며, 이로 인하여 많은 데이터 속에 원하는 정보를 용이하게 획득하거나 검색하는 기술도 발전되고 있다. 이에 따라 다양하고 많은 건강정보 제공 사이트가 개발되어 운영되고 있지만, 웹서비스에 기반한 정보 제공의 한계와 개인화의 부족으로 사용자의 건강관리와 증진에 효과적이지 못한 결과를 보이고 있다. 건강정보 지원 서비스는 생체정보를 획득하고, 획득된 데이터를 다시 컴퓨터에 입력하여 기존 네트워크 기반을 통하여 전송하는 형태로 개발되고 있기 때문에 불편함은 물론 비효율적이다. 본 논문에서는 기존의 의료 데이터와 Framingham 위험인자(FRS)를 활용, 신경망을 이용한 생활습관성 질환 시스템 설계를 제안한다. 제안하는 시스템을 통하여 생활습관성 질환 환자의 고통호소를 의사가 신속하게 파악할 수 있도록 기초자료와 가이드라인을 제공하게 되고, 따라서 환자의 안위 증진이 향상되게 된다.

An Attention-based Temporal Network for Parkinson's Disease Severity Rating using Gait Signals

  • Huimin Wu;Yongcan Liu;Haozhe Yang;Zhongxiang Xie;Xianchao Chen;Mingzhi Wen;Aite Zhao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제17권10호
    • /
    • pp.2627-2642
    • /
    • 2023
  • Parkinson's disease (PD) is a typical, chronic neurodegenerative disease involving the concentration of dopamine, which can disrupt motor activity and cause different degrees of gait disturbance relevant to PD severity in patients. As current clinical PD diagnosis is a complex, time-consuming, and challenging task that relays on physicians' subjective evaluation of visual observations, gait disturbance has been extensively explored to make automatic detection of PD diagnosis and severity rating and provides auxiliary information for physicians' decisions using gait data from various acquisition devices. Among them, wearable sensors have the advantage of flexibility since they do not limit the wearers' activity sphere in this application scenario. In this paper, an attention-based temporal network (ATN) is designed for the time series structure of gait data (vertical ground reaction force signals) from foot sensor systems, to learn the discriminative differences related to PD severity levels hidden in sequential data. The structure of the proposed method is illuminated by Transformer Network for its success in excavating temporal information, containing three modules: a preprocessing module to map intra-moment features, a feature extractor computing complicated gait characteristic of the whole signal sequence in the temporal dimension, and a classifier for the final decision-making about PD severity assessment. The experiment is conducted on the public dataset PDgait of VGRF signals to verify the proposed model's validity and show promising classification performance compared with several existing methods.

Enhancing Alzheimer's Disease Classification using 3D Convolutional Neural Network and Multilayer Perceptron Model with Attention Network

  • Enoch A. Frimpong;Zhiguang Qin;Regina E. Turkson;Bernard M. Cobbinah;Edward Y. Baagyere;Edwin K. Tenagyei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제17권11호
    • /
    • pp.2924-2944
    • /
    • 2023
  • Alzheimer's disease (AD) is a neurological condition that is recognized as one of the primary causes of memory loss. AD currently has no cure. Therefore, the need to develop an efficient model with high precision for timely detection of the disease is very essential. When AD is detected early, treatment would be most likely successful. The most often utilized indicators for AD identification are the Mini-mental state examination (MMSE), and the clinical dementia. However, the use of these indicators as ground truth marking could be imprecise for AD detection. Researchers have proposed several computer-aided frameworks and lately, the supervised model is mostly used. In this study, we propose a novel 3D Convolutional Neural Network Multilayer Perceptron (3D CNN-MLP) based model for AD classification. The model uses Attention Mechanism to automatically extract relevant features from Magnetic Resonance Images (MRI) to generate probability maps which serves as input for the MLP classifier. Three MRI scan categories were considered, thus AD dementia patients, Mild Cognitive Impairment patients (MCI), and Normal Control (NC) or healthy patients. The performance of the model is assessed by comparing basic CNN, VGG16, DenseNet models, and other state of the art works. The models were adjusted to fit the 3D images before the comparison was done. Our model exhibited excellent classification performance, with an accuracy of 91.27% for AD and NC, 80.85% for MCI and NC, and 87.34% for AD and MCI.

Neuroanatomical Localization of Rapid Eye Movement Sleep Behavior Disorder in Human Brain Using Lesion Network Mapping

  • Taoyang Yuan;Zhentao Zuo;Jianguo Xu
    • Korean Journal of Radiology
    • /
    • 제24권3호
    • /
    • pp.247-258
    • /
    • 2023
  • Objective: To localize the neuroanatomical substrate of rapid eye movement sleep behavior disorder (RBD) and to investigate the neuroanatomical locational relationship between RBD and α-synucleinopathy neurodegenerative diseases. Materials and Methods: Using a systematic PubMed search, we identified 19 patients with lesions in different brain regions that caused RBD. First, lesion network mapping was applied to confirm whether the lesion locations causing RBD corresponded to a common brain network. Second, the literature-based RBD lesion network map was validated using neuroimaging findings and locations of brain pathologies at post-mortem in patients with idiopathic RBD (iRBD) who were identified by independent systematic literature search using PubMed. Finally, we assessed the locational relationship between the sites of pathological alterations at the preclinical stage in α-synucleinopathy neurodegenerative diseases and the brain network for RBD. Results: The lesion network mapping showed lesions causing RBD to be localized to a common brain network defined by connectivity to the pons (including the locus coeruleus, dorsal raphe nucleus, central superior nucleus, and ventrolateral periaqueductal gray), regardless of the lesion location. The positive regions in the pons were replicated by the neuroimaging findings in an independent group of patients with iRBD and it coincided with the reported pathological alterations at post-mortem in patients with iRBD. Furthermore, all brain pathological sites at preclinical stages (Braak stages 1-2) in Parkinson's disease (PD) and at brainstem Lewy body disease in dementia with Lewy bodies (DLB) were involved in the brain network identified for RBD. Conclusion: The brain network defined by connectivity to positive pons regions might be the regulatory network loop inducing RBD in humans. In addition, our results suggested that the underlying cause of high phenoconversion rate from iRBD to neurodegenerative α-synucleinopathy might be pathological changes in the preclinical stage of α-synucleinopathy located at the regulatory network loop of RBD.

Identification of Cardiovascular Disease Based on Echocardiography and Electrocardiogram Data Using the Decision Tree Classification Approach

  • Tb Ai Munandar;Sumiati;Vidila Rosalina
    • International Journal of Computer Science & Network Security
    • /
    • 제23권9호
    • /
    • pp.150-156
    • /
    • 2023
  • For a doctor, diagnosing a patient's heart disease is not easy. It takes the ability and experience with high flying hours to be able to accurately diagnose the type of patient's heart disease based on the existing factors in the patient. Several studies have been carried out to develop tools to identify types of heart disease in patients. However, most only focus on the results of patient answers and lab results, the rest use only echocardiography data or electrocardiogram results. This research was conducted to test how accurate the results of the classification of heart disease by using two medical data, namely echocardiography and electrocardiogram. Three treatments were applied to the two medical data and analyzed using the decision tree approach. The first treatment was to build a classification model for types of heart disease based on echocardiography and electrocardiogram data, the second treatment only used echocardiography data and the third treatment only used electrocardiogram data. The results showed that the classification of types of heart disease in the first treatment had a higher level of accuracy than the second and third treatments. The accuracy level for the first, second and third treatment were 78.95%, 73.69% and 50%, respectively. This shows that in order to diagnose the type of patient's heart disease, it is advisable to look at the records of both the patient's medical data (echocardiography and electrocardiogram) to get an accurate level of diagnosis results that can be accounted for.

네트워크 약리학을 이용한 소양증을 동반한 피부 염증에 대한 지실(枳實)의 잠재적 치료기전 탐색 (Analysis of Potential Active Ingredients and Treatment Mechanism of Ponciri Fructus Immaturus for Dermatitis Accompanied by Pruritus Using Network Pharmacology)

  • 서광일;김준동;김병현;김규석;남혜정;김윤범
    • 한방안이비인후피부과학회지
    • /
    • 제35권4호
    • /
    • pp.75-94
    • /
    • 2022
  • Objectives : To identify the active ingredient of Poncirus Trifoliata Immaturus and to explore the mechanism expected to potentially act on dermatitis accompanied by pruritus. Methods : We conducted the network pharmacological analysis. We selected effective ingredients among the active compounds of Poinciri Fructus Immaturus. We found the target protein of the selected active ingredient, disease(dermatitis accompanied by pruritus) and fexofenadine. Then we established the network between the proteins which Poinciri Fructus Immaturus and fexofenadine intersected with disease respectively, and the coregene was also extracted. After that, the active pathways in the human body involving the groups and coregenes were searched. Results : Total of 7 active ingredients were selected, and 202 target proteins were collected. There were 756 proteins related to inflammatory skin disease accompanied by pruritus, and 75 proteins were related to fexofenadine. 42 proteins crossed by Poinciri Fructus Immaturus with a disease, and 31 proteins crossed by fexofenadine with a disease. 12 proteins were found as a coregene from the proteins that cross Poinciri Fructus Immaturus and disease. Coregenes are involved in 'Nitric-oxide synthase regulator activity', 'Epidermal growth factor receptor signaling pathway'. 2 groups that extracted are invloved in 'Fc receptor signaling pathway', 'Central carbon metabolism in cancer', 'Phosphatidylinositol 3-kinase complex, class IB', and 'omega-hydroxylase P450 pathway'. Conclusion : It is expected that Poinciri Fructus Immaturus will be able to show direct or indirect anti-pruritus and anti-inflammatory effects on skin inflammation accompanied by pruritus in the future. And it is also expected to have a synergy effect with fexofenadine on skin disease.

뉴럴네트워크를 이용한 심음의 정상 비정상 분류 (Classificatin of Normal and Abnormal Heart Sounds Using Neural Network)

  • 윤희진
    • 융합정보논문지
    • /
    • 제8권5호
    • /
    • pp.131-135
    • /
    • 2018
  • 현대인의 사망원인 2위를 차지하고 있는 심장병은 자각 증세 없이 갑자기 돌연사를 당할 수 있는 무서운 질병으로 예방이 중요하다. 심장병 중 대동맥판막 협착증을 판단하기 위해서 physioNet에서 제공하는 심음 데이터 중 S1과 S2 사이의 수축 심음 데이터를 이용하여 병명을 진단하였다. 대동맥 판막은 좌심실에서 대동맥으로 피가 유출되는 부위의 판막이다. 심장병 중 대동맥판막 협착증은 대동맥판막이 좁아져 좌심실의 수축 시 판막이 열리지 않는 질환이다. 위 논문에서는 정상인과 대동맥판막 협착증 환자를 합쳐 특징이 180개로 이루어진 3126개의 샘플 심음 데이터를 실험데이터로 사용하였다. 정상과 대동맥판막 협착증 환자를 구분하기 위해 가중퍼지신경망(NEWFM, Neural Network with Weighted Fuzzy Membership Function)이용하였다. 가중퍼지신경망의 특징선택 방법으로 가중치의 평균 방법을 이용하였으며, 분류 결과는 91.0871%의 정확도를 나타내었다.

순환신경망을 이용한 질병발생건수 예측 (Predicting the number of disease occurrence using recurrent neural network)

  • 이승현;여인권
    • 응용통계연구
    • /
    • 제33권5호
    • /
    • pp.627-637
    • /
    • 2020
  • 본 논문에서는 건강보험심사평가원에서 제공한 약 120만명의 2014년 고령환자의료자료(HIRA-APS-2014-0053)과 기상자료를 일반화추정방정식(generalized estimating equation; GEE) 모형과 long short term memory (LSTM) 기반 순환신경망(recurrent neural network; RNN) 모형으로 분석하여 기상 조건에 따른 주요 주상병의 발생 빈도를 예측한다. 이를 위해 환자가 의료 서비스를 받은 기관의 지역을 이용하여 환자의 거주지를 추정하고 해당 지역의 주별 기상 관측소 자료와 의료자료를 병합하였다. 질병 발생 상태를 세 개의 범주(질병에 걸리지 않음, 관심 주상병 발생, 다른 질병 방생)로 나누었으며 각 범주에 속할 확률을 GEE 모형과 RNN 모형으로 추정하였다. 각 범주별 발생 건수는 해당 범주의 속할 추정확률의 합으로 계산하였으며 비교분석결과 RNN을 이용한 예측이 GEE를 이용한 예측보다 정확도가 높은 것으로 나타났다.

A network pharmacology and molecular docking approach in the exploratory investigation of the biological mechanisms of lagundi (Vitex negundo L.) compounds against COVID-19

  • Robertson G. Rivera;Patrick Junard S. Regidor;Edwin C. Ruamero Jr;Eric John V. Allanigue;Melanie V. Salinas
    • Genomics & Informatics
    • /
    • 제21권1호
    • /
    • pp.4.1-4.18
    • /
    • 2023
  • Coronavirus disease 2019 (COVID-19) is an inflammatory and infectious disease caused by severe acute respiratory syndrome coronavirus 2 virus with a complex pathophysiology. While COVID-19 vaccines and boosters are available, treatment of the disease is primarily supportive and symptomatic. Several research have suggested the potential of herbal medicines as an adjunctive treatment for the disease. A popular herbal medicine approved in the Philippines for the treatment of acute respiratory disease is Vitex negundo L. In fact, the Department of Science and Technology of the Philippines has funded a clinical trial to establish its potential as an adjunctive treatment for COVID-19. Here, we utilized network pharmacology and molecular docking in determining pivotal targets of Vitex negundo compounds against COVID-19. The results showed that significant targets of Vitex negundo compounds in COVID-19 are CSB, SERPINE1, and PLG which code for cathepsin B, plasminogen activator inhibitor-1, and plasminogen, respectively. Molecular docking revealed that α-terpinyl acetate and geranyl acetate have good binding affinity in cathepsin B; 6,7,4-trimethoxyflavanone, 5,6,7,8,3',4',5'-heptamethoxyflavone, artemetin, demethylnobiletin, gardenin A, geranyl acetate in plasminogen; and 7,8,4-trimethoxyflavanone in plasminogen activator inhibitor-1. While the results are promising, these are bound to the limitations of computational methods and further experimentation are needed to completely establish the molecular mechanisms of Vitex negundo against COVID-19.

심전도 신호를 이용한 심장 질환 진단에 관한 연구 (A Study of ECG Based Cardiac Diseases Diagnoses)

  • 김현동;윤재복;김현동;김태선
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 학술대회 논문집 정보 및 제어부문
    • /
    • pp.328-330
    • /
    • 2004
  • In this paper, ECG based cardiac disease diagnosis models are developed. Conventionally, ECG monitoring equipments can only measure and store ECG signals and they always require medical doctor's diagnosis actions which are not desirable for continuous ambulatory monitoring and diagnosis healthcare systems. In this paper, two kinds of neural based self cardiac disease diagnosis engines are developed and tested for four kinds of diseases, sinus bradycardia, sinus tachycardia, left bundle branch block and right bundle branch block. For diagnosis engines, error backpropagation neural network (BP) and probabilistic neural network (PNN) were applied. Five signal features including heart rate, QRS interval, PR interval, QT interval, and T wave types were selected for diagnosis characteristics. To show the validity of proposed diagnosis engine, MIT-BIH database were used to test. Test results showed that BP based diagnosis engine has 71% of diagnosis accuracy which is superior to accuracy of PNN based diagnosis engine. However, PNN based diagnosis engine showed superior diagnosis accuracy for complex-disease diagnoses than BP based diagnosis engine.

  • PDF