기존의 음성인식기들은 일반적으로 간단하면서도 성능이 우수한 계층별 학습에 의해서 설계된다. 계층별 학습은 통계적 패턴인식에서의 ML 추정기법처럼 모델간의 독립성이 보장되고 무한한 양의 학습데이타가 주어진다는 가정에 기초하고 있다. 그러나, 대상어휘집합에 음운학적으로 유사한 어휘가 많이 포함되어 있는 인식문제에 있어서는 모델간의 독립성이 보장되지 못하고, 실제 주어지는 grktmqepdlk의 양도 제한되므로 기존의 합습알고리즘에는 한계가 있다. 따라서 본 논문에서는 그러한 가정상의 문제점으로 생기는 인식기의 성능저하를 개선할 수 있는 변별력 있는 학습알고리즘들을 검토하고 그의 일반적인 접근방법들에 대해서 논의한다.
Hidden Markov Model (HMM) is the most widely used method in speech recognition. In general, HMM parameters are trained to have maximum likelihood (ML) for training data. This method doesn't take account of discrimination to other words. To complement this problem, this paper proposes a word verification method by re-recognition of the recognized word and its similar word using the discriminative function between two words. The similar word is selected by calculating the probability of other words to each HMM. The recognizer haveing discrimination to each word is realized using the weighting to each state and the weighting is calculated by genetic algorithm.
This paper proposes a discriminative training algorithm for estimating hidden Markov model (HMM) parameters. The proposed algorithm estimates the Parameters by minimizing the p-norm of log-likelihood difference (PLD) between the utterance probability given the correct transcription and the most competitive transcription.
Due to the serious issues posed by facial manipulation technologies, many researchers are becoming increasingly interested in the identification of face forgeries. The majority of existing face forgery detection methods leverage powerful data adaptation ability of neural network to derive distinguishing traits. These deep learning-based detection methods frequently treat the detection of fake faces as a binary classification problem and employ softmax loss to track CNN network training. However, acquired traits observed by softmax loss are insufficient for discriminating. To get over these limitations, in this study, we introduce a novel discriminative feature learning based on Vision Transformer architecture. Additionally, a separation-center loss is created to simply compress intra-class variation of original faces while enhancing inter-class differences in the embedding space.
KSII Transactions on Internet and Information Systems (TIIS)
/
제12권11호
/
pp.5496-5521
/
2018
Object detection and tracking is the basic capability of mobile robots to achieve natural human-robot interaction. In this paper, an object tracking system of mobile robot is designed and validated using improved multiple instance learning algorithm. The improved multiple instance learning algorithm which prevents model drift significantly. Secondly, in order to improve the capability of classifiers, an active sample selection strategy is proposed by optimizing a bag Fisher information function instead of the bag likelihood function, which dynamically chooses most discriminative samples for classifier training. Furthermore, we integrate the co-training criterion into algorithm to update the appearance model accurately and avoid error accumulation. Finally, we evaluate our system on challenging sequences and an indoor environment in a laboratory. And the experiment results demonstrate that the proposed methods can stably and robustly track moving object.
본 연구에서는 환경음 인식 성능의 향상을 위하여 GMM의 훈련 방식에 MCE 도입을 제안하였다. 이는 환경음 데이터 모델링에 사용할 분류오류함수를 정의할 때 해당 클래스의 로그우도 뿐 아니라 다른 클래스의 로그우도도 같이 고려함으로써 변별력 있는 분류가 이뤄질 수 있게 한다. 모델의 파라미터는 전체 클래스를 고려한 손실함수를 정의하고, GPD(generalized probabilistic descent)알고리즘을 이용하여 추정하였다. 제안된 방법의 인식 성능 비교를 위해 모두 9가지 환경음을 전처리 과정과 MFCC(mel-frequency cepstral coefficients)를 이용하여 12차 특징을 추출하고, 이를 혼합 성분의 수에 따라 GMM 분류 실험을 행하였다. 실험 결과에 따르면 혼합 성분을 19개 사용한 경우에서 MCE 훈련 방식이 평균 87.06%의 인식률로 가장 좋은 성능을 보였다. 이 결과로 제안한 MCE 훈련 방식이 환경음 인식에서 GMM의 훈련 방식으로 효과적으로 사용될 수 있음을 확인하였다.
본 논문에서는 함정전투체계의 EOTS나 IRST에서 획득한 영상을 초고해상도 영상으로 복원한다. 저해상도에서 초고해상도의 영상을 생성하는 생성 모델과 이를 판별하는 판별 모델로 구성된 생성적 적대 신경망을 이용하고, 다양한 학습 파라미터의 변화를 통한 최적의 값을 제안한다. 실험에 사용되는 학습 파라미터는 crop size와 sub-pixel layer depth, 학습 이미지 종류로 구성되며, 평가는 일반적인 영상 품질 평가 지표에 추가적으로 특징점 추출 알고리즘을 함께 사용하였다. 그 결과, Crop size가 클수록, Sub-pixel layer depth가 깊을수록, 고해상도의 학습이미지를 사용할수록 더 좋은 품질의 영상을 생성한다.
KSII Transactions on Internet and Information Systems (TIIS)
/
제13권11호
/
pp.5427-5445
/
2019
While deep neural networks have achieved remarkable performance in representation learning, a huge amount of labeled training data are usually required by supervised deep models such as convolutional neural networks. In this paper, we propose a new representation learning method, namely generative adversarial networks (GAN) based bagging deep convolutional autoencoders (GAN-BDCAE), which can map data to diverse hierarchical representations in an unsupervised fashion. To boost the size of training data, to train deep model and to aggregate diverse learning machines are the three principal avenues towards increasing the capabilities of representation learning of neural networks. We focus on combining those three techniques. To this aim, we adopt GAN for realistic unlabeled sample generation and bagging deep convolutional autoencoders (BDCAE) for robust feature learning. The proposed method improves the discriminative ability of learned feature embedding for solving subsequent pattern recognition problems. We evaluate our approach on three standard benchmarks and demonstrate the superiority of the proposed method compared to traditional unsupervised learning methods.
Journal of the Korean Academy of Child and Adolescent Psychiatry
/
제29권4호
/
pp.150-160
/
2018
Objectives: This study investigated the effect of social skills training (SST) on facial emotion recognition and discrimination in children with attention-deficit/hyperactivity disorder (ADHD) and autism spectrum disorder (ASD). Methods: Twenty-three children aged 7 to 10 years participated in our SST. They included 15 children diagnosed with ADHD and 8 with ASD. The participants' parents completed the Korean version of the Child Behavior Checklist (K-CBCL), the ADHD Rating Scale, and Conner's Scale at baseline and post-treatment. The participants completed the Korean Wechsler Intelligence Scale for Children-IV (K-WISC-IV) and the Advanced Test of Attention at baseline and the Penn Emotion Recognition and Discrimination Task at baseline and post-treatment. Results: No significant changes in facial emotion recognition and discrimination occurred in either group before and after SST. However, when controlling for the processing speed of K-WISC and the social subscale of K-CBCL, the ADHD group showed more improvement in total (p=0.049), female (p=0.039), sad (p=0.002), mild (p=0.015), female extreme (p=0.005), male mild (p=0.038), and Caucasian (p=0.004) facial expressions than did the ASD group. Conclusion: SST improved facial expression recognition for children with ADHD more effectively than it did for children with ASD, in whom additional training to help emotion recognition and discrimination is needed.
본 논문은 external knowledge를 사용한 lattice 없는 상호 정보 최대화(Lattice Free Maximum Mutual Information, LF-MMI) 기반 음향 모델링 방법을 제안한다. External knowledge란 음향 모델에서 사용하는 학습 데이터 이외의 문자열 데이터를 말한다. LF-MMI란 심층 신경망(Deep Neural Network, DNN) 학습의 최적화를 위한 목적 함수의 일종으로, 구별 학습에서 높은 성능을 보인다. LF-MMI에는 DNN의 사후 확률을 계산하기 위해 음소의 열을 사전 확률로 갖는다. 본 논문에서는 LF-MMI의 목적식의 사전 확률을 담당하는 음소 모델링에 external knowlege를 사용함으로써 과적합의 가능성을 낮추고, 음향 모델의 성능을 높이는 방법을 제안한다. External memory를 사용하여 사전 확률을 생성한 LF-MMI 모델을 사용했을 때 기존 LF-MMI와 비교하여 14 %의 상대적 성능 개선을 보였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.