• Title/Summary/Keyword: Discrete-Element-Method

Search Result 508, Processing Time 0.024 seconds

Analytical model for the composite effect of coupled beams with discrete shear connectors

  • Zheng, Tianxin;Lu, Yong;Usmani, Asif
    • Structural Engineering and Mechanics
    • /
    • v.52 no.2
    • /
    • pp.369-389
    • /
    • 2014
  • Two-layer coupled or composite beams with discrete shear connectors of finite dimensions are commonly encountered in pre-fabricated construction. This paper presents the development of simplified closed-form solutions for such type of coupled beams for practical applications. A new coupled beam element is proposed to represent the unconnected segments in the beam. General solutions are then developed by an inductive method based on the results from the finite element analysis. A modification is subsequently considered to account for the effect of local deformations. For typical cases where the local deformation is primarily concerned about its distribution over the depth of the coupled beam, empirical modification factors are developed based on parametric calculations using finite element models. The developed analytical method for the coupled beams in question is simple, sufficiently accurate, and suitable for quick calculation in engineering practice.

Discrete element modeling of masonry structures: Validation and application

  • Pulatsu, Bora;Bretas, Eduardo M.;Lourenco, Paulo B.
    • Earthquakes and Structures
    • /
    • v.11 no.4
    • /
    • pp.563-582
    • /
    • 2016
  • The failure mechanism and maximum collapse load of masonry structures may change significantly under static and dynamic excitations depending on their internal arrangement and material properties. Hence, it is important to understand correctly the nonlinear behavior of masonry structures in order to adequately assess their safety and propose efficient strengthening measures, especially for historical constructions. The discrete element method (DEM) can play an important role in these studies. This paper discusses possible collapse mechanisms and provides a set of parametric analyses by considering the influence of material properties and cross section morphologies on the out of plane strength of masonry walls. Detailed modeling of masonry structures may affect their mechanical strength and displacement capacity. In particular, the structural behavior of stacked and rubble masonry walls, portal frames, simple combinations of masonry piers and arches, and a real structure is discussed using DEM. It is further demonstrated that this structural analysis tool allows obtaining excellent results in the description of the nonlinear behavior of masonry structures.

Dynamic Analysis of Fabric in a Rotating Horizontal Drum Using the Discrete Element Method (DEM을 이용한 회전원통에서의 세탁물의 동역학적 해석)

  • Park, Jun-Young;Wassgren, Carl R.
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1839-1844
    • /
    • 2003
  • In order to provide a tool for designing more efficient methods of mixing fabric, a simplified discrete element computational model was developed for modeling fabric dynamics in a rotating horizontal drum. Because modeling the interactions between actual pieces of fabric is quite complex, a simplified model was developed where individual pieces of bundled fabric are represented by spherical particles. The simulations are used to investigate fabric bundle kinematics, the power required to drive the rotating drum, and the power dissipated through normal and tangential contacts. Parametric studies indicate only fill percentage, drum rotation speed, and friction coefficient play significant roles in the fabric bundle dynamics.

  • PDF

Structural Analysis of the Deck of a Dump Truck Based on Bulk Material Behavior using the Discrete Element Method (이산요소법을 이용한 벌크 재료 시뮬레이션에 의한 덤프 트럭 데크 하중산출에 대한 연구)

  • Ryu, Seung Hun;Woo, Ho Kil
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.33 no.3
    • /
    • pp.187-192
    • /
    • 2020
  • To reduce fuel consumption by reducing the weight of the deck of a dump truck and to design an eco-friendly deck, accurate structural analysis is required. To date, the load on the deck has been calculated based on the hydrostatic pressure or by applying the earth pressure theory. However, these methods cannot be used to determine the non-uniformity of the load on the deck. Load distribution varies depending on the size distribution and interaction of aggregate particles. Compared with the finite element method, the discrete element method can simulate the behavior of aggregate particles more effectively. In this study, major properties were obtained by measuring bulk density and repose. The deck of a 15 ton dump truck was simulated using the obtained properties and bumping, breaking, and turning load conditions were applied. EDEM, which is a discrete element analysis software, was employed. The stress and strain distribution of the deck were calculated by NASTRAN and compared with the measured values. The study revealed that the results derived from a DEM simulation were more accurate than those based on mathematical assumption.

Development of a Coarse Lunar Soil Model Using Discrete Element Method (이산요소법을 이용한 성긴 달토양 수치해석모델 개발)

  • Jeong, Hyun-Jae;Lim, Jae Hyuk;Kim, Jin-Won
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.1
    • /
    • pp.26-34
    • /
    • 2019
  • In this paper, a coarse lunar soil model is developed using discrete element method and its computed physical properties are compared with those of the actual lunar soil for its validation. The surface of the actual moon consists of numerous craters and rocks of various sizes, and it is covered with fine dry soil which seriously affects the landing stability of the lunar lander. Therefore, in consideration of the environment of the lunar regolith, the lunar soil is realized using discrete element method. To validate the coarse model of lunar soil, the simulations of the indentation test and the direct shear test are performed to check the physical properties(indentation depth, cohesion stress, internal friction angle). To examine the performance of the proposed model, the drop simulation of finite element model of single-leg landing gear is performed on proposed soil models with different particle diameters. The impact load delivered to the strut of the lander is compared to test results.

Development of Standard Hill Technology for Image Encryption over a 256-element Body

  • JarJar, Abdellatif
    • Journal of Multimedia Information System
    • /
    • v.8 no.1
    • /
    • pp.45-56
    • /
    • 2021
  • This document traces the new technologies development based on a deep classical Hill method improvement. Based on the chaos, this improvement begins with the 256 element body construction, which is to replace the classic ring used by all encryption systems. In order to facilitate the application of algebraic operators on the pixels, two substitution tables will be created, the first represents the discrete logarithm, while the second represents the discrete exponential. At the same time, a large invertible matrix whose structure will be explained in detail will be the subject of the advanced classical Hill technique improvement. To eliminate any linearity, this matrix will be accompanied by dynamic vectors to install an affine transformation. The simulation of a large number of images of different sizes and formats checked by our algorithm ensures the robustness of our method.

Evaluation of Stability of Lining Systems of Landfill Using Discrete Element Method (개별요소법을 사용한 매립지 사면 차수 시스템의 안정성 평가)

  • 박현일;이승래;정구영
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.2
    • /
    • pp.87-95
    • /
    • 2003
  • In this paper, the discrete element method was applied to evaluate the stability of composite cover and lining system of landfill. This method is capable of estimating the distribution of tensile force and shear stress mobilized in each liner component and its interfaces, based on a relationship of force and displacement. It was assumed that the cover soil and geomembrane were comprised of slices connected with elastoplastic Winkler springs and tensile spring respectively. Parametric study using this method was performed and compared with other techniques based on limit equilibrium method fur the example analysis.

FULLY DISCRETE MIXED FINITE ELEMENT METHOD FOR A QUASILINEAR STEFAN PROBLEM WITH A FORCING TERM IN NON-DIVERGENCE FORM

  • Lee, H.Y.;Ohm, M.R.;Shin, J.Y.
    • Journal of applied mathematics & informatics
    • /
    • v.24 no.1_2
    • /
    • pp.191-207
    • /
    • 2007
  • Based on a mixed Galerkin approximation, we construct the fully discrete approximations of $U_y$ as well as U to a single-phase quasilinear Stefan problem with a forcing term in non-divergence form. We prove the optimal convergence of approximation to the solution {U, S} and the superconvergence of approximation to $U_y$.

Study on the stresses distribution of ballast bed using DEM (Discrete Element Method) Analysis (DEM을 이용한 자갈도상의 응력분포에 관한 연구)

  • Kim Dae-Sang;Lee Su-Hyung;Lee Sung-Hyuk;Lee Sang-Bae
    • Proceedings of the KSR Conference
    • /
    • 2005.11a
    • /
    • pp.878-883
    • /
    • 2005
  • Sleeper, the ballast, and ballast mat in the high-speed railroad line are modelled using a two-dimensional discrete element method to generate circle and line elements. Stress transfer mechanism from the sleeper to the subgrade via the ballast is analyzed. The behavior of ballast bed of the high-speed railroad line is also accessed with the model.

  • PDF