• Title/Summary/Keyword: Discrete particle swarm optimization

Search Result 28, Processing Time 0.027 seconds

Particle Swarm Optimizations to Solve Multi-Valued Discrete Problems (다수의 값을 갖는 이산적 문제에 적용되는 Particle Swarm Optimization)

  • Yim, Dong-Soon
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.36 no.3
    • /
    • pp.63-70
    • /
    • 2013
  • Many real world optimization problems are discrete and multi-valued. Meta heuristics including Genetic Algorithm and Particle Swarm Optimization have been effectively used to solve these multi-valued optimization problems. However, extensive comparative study on the performance of these algorithms is still required. In this study, performance of these algorithms is evaluated with multi-modal and multi-dimensional test functions. From the experimental results, it is shown that Discrete Particle Swarm Optimization (DPSO) provides better and more reliable solutions among the considered algorithms. Also, additional experiments shows that solution quality of DPSO is not lowered significantly when bit size representing a solution increases. It means that bit representation of multi-valued discrete numbers provides reliable solutions instead of becoming barrier to performance of DPSO.

Performance Comparison of Discrete Particle Swarm Optimizations in Sequencing Problems (순서화 문제에서 01산적 Particle Swarm Optimization들의 성능 비교)

  • Yim, D.S.
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.33 no.4
    • /
    • pp.58-68
    • /
    • 2010
  • Particle Swarm Optimization (PSO) which has been well known to solve continuous problems can be applied to discrete combinatorial problems. Several DPSO (Discrete Particle Swarm Optimization) algorithms have been proposed to solve discrete problems such as traveling salesman, vehicle routing, and flow shop scheduling problems. They are different in representation of position and velocity vectors, operation mechanisms for updating vectors. In this paper, the performance of 5 DPSOs is analyzed by applying to traditional Traveling Salesman Problems. The experiment shows that DPSOs are comparable or superior to a genetic algorithm (GA). Also, hybrid PSO combined with local optimization (i.e., 2-OPT) provides much improved solutions. Since DPSO requires more computation time compared with GA, however, the performance of hybrid DPSO is not better than hybrid GA.

Network Selection Algorithm for Heterogeneous Wireless Networks Based on Multi-Objective Discrete Particle Swarm Optimization

  • Zhang, Wenzhu;Kwak, Kyung-Sup;Feng, Chengxiao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.7
    • /
    • pp.1802-1814
    • /
    • 2012
  • In order to guide users to select the most optimal access network in heterogeneous wireless networks, a network selection algorithm is proposed which is designed based on multi-objective discrete particle swarm optimization (Multi-Objective Discrete Particle Swarm Optimization, MODPSO). The proposed algorithm keeps fast convergence speed and strong adaptability features of the particle swarm optimization. In addition, it updates an elite set to achieve multi-objective decision-making. Meanwhile, a mutation operator is adopted to make the algorithm converge to the global optimal. Simulation results show that compared to the single-objective algorithm, the proposed algorithm can obtain the optimal combination performance and take into account both the network state and the user preferences.

Phasor Discrete Particle Swarm Optimization Algorithm to Configure Community Energy Systems (구역전기사업자 구성을 위한 Phasor Discrete Particle Swarm Optimization 알고리즘)

  • Bae, In-Su;Kim, Jin-O
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.9
    • /
    • pp.55-61
    • /
    • 2009
  • This paper presents a modified Phasor Discrete Particle Swarm Optimization (PDPSO) algorithm to configure Community Energy Systems(CESs) in the distribution system. The CES obtains electric power from its own Distributed Generations(DGs) and purchases insufficient power from the competitive power market, to supply power for customers contracted with the CES. When there are two or more CESs in a network, the CESs will continue the competitive expansion to reduce the total operation cost. The particles of the proposed PDPSO algorithm have magnitude and phase angle values, and move within a circle area. In the case study, the results by PDPSO algorithm was compared with that by the conventional DPSO algorithm.

Photovoltaic System Allocation Using Discrete Particle Swarm Optimization with Multi-level Quantization

  • Song, Hwa-Chang;Diolata, Ryan;Joo, Young-Hoon
    • Journal of Electrical Engineering and Technology
    • /
    • v.4 no.2
    • /
    • pp.185-193
    • /
    • 2009
  • This paper presents a methodology for photovoltaic (PV) system allocation in distribution systems using a discrete particle swarm optimization (DPSO). The PV allocation problem is in the category of mixed integer nonlinear programming and its formulation may include multi-valued dis-crete variables. Thus, the PSO requires a scheme to deal with multi-valued discrete variables. This paper introduces a novel multi-level quantization scheme using a sigmoid function for discrete particle swarm optimization. The technique is employed to a standard PSO architecture; the same velocity update equation as in continuous versions of PSO is used but the particle's positions are updated in an alternative manner. The set of multi-level quantization is defined as integer multiples of powers-of-two terms to efficiently approximate the sigmoid function in transforming a particle's position into discrete values. A comparison with a genetic algorithm (GA) is performed to verify the quality of the solutions obtained.

An integrated particle swarm optimizer for optimization of truss structures with discrete variables

  • Mortazavi, Ali;Togan, Vedat;Nuhoglu, Ayhan
    • Structural Engineering and Mechanics
    • /
    • v.61 no.3
    • /
    • pp.359-370
    • /
    • 2017
  • This study presents a particle swarm optimization algorithm integrated with weighted particle concept and improved fly-back technique. The rationale behind this integration is to utilize the affirmative properties of these new terms to improve the search capability of the standard particle swarm optimizer. Improved fly-back technique introduced in this study can be a proper alternative for widely used penalty functions to handle existing constraints. This technique emphasizes the role of the weighted particle on escaping from trapping into local optimum(s) by utilizing a recursive procedure. On the other hand, it guaranties the feasibility of the final solution by rejecting infeasible solutions throughout the optimization process. Additionally, in contrast with penalty method, the improved fly-back technique does not contain any adjustable terms, thus it does not inflict any extra ad hoc parameters to the main optimizer algorithm. The improved fly-back approach, as independent unit, can easily be integrated with other optimizers to handle the constraints. Consequently, to evaluate the performance of the proposed method on solving the truss weight minimization problems with discrete variables, several benchmark examples taken from the technical literature are examined using the presented method. The results obtained are comparatively reported through proper graphs and tables. Based on the results acquired in this study, it can be stated that the proposed method (integrated particle swarm optimizer, iPSO) is competitive with other metaheuristic algorithms in solving this class of truss optimization problems.

Rule-based Hybrid Discretization of Discrete Particle Swarm Optimization for Optimal PV System Allocation (PV 시스템의 최적 배치 문제를 위한 이산 PSO에서의 규칙 기반 하이브리드 이산화)

  • Song, Hwa-Chang;Ko, Jae-Hwan;Choi, Byoung-Wook
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.6
    • /
    • pp.792-797
    • /
    • 2011
  • This paper discusses the application of a hybrid discretiziation method for the discretization procedure that needs to be included in discrete particle swarm optimization (DPSO) for the problem of allocating PV (photovoltaic) systems onto distribution power systems. For this purpose, this paper proposes a rule-based expert system considering the objective function value and its optimizing speed as the input parameters and applied it to the PV allocation problem including discrete decision variables. For multi-level discretization, this paper adopts a hybrid method combined with a simple rounding and sigmoid funtion based 3-step and 5-step quantization methods, and the application of the rule based expert system proposing the adequate discretization method at each PSO iteration so that the DPSO with the hybrid discretization can provide better performance than the previous DPSO.

Phasor Discrete Particle Swarm Optimization Algorithm to Configure Micro-grids

  • Bae, In-Su;Kim, Jin-O
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.1
    • /
    • pp.9-16
    • /
    • 2012
  • The present study presents the Phasor Discrete Particle Swarm Optimization (PDPSO) algorithm, an effective optimization technique, the multi-dimensional vectors of which consist of magnitudes and phase angles. PDPSO is employed in the configuration of micro-grids. Micro-grids are concepts of distribution system that directly unifies customers and distributed generations (DGs). Micro-grids could supply electric power to customers and conduct power transaction via a power market by operating economic dispatch of diverse cost functions through several DGs. If a large number of micro-grids exist in one distribution system, the algorithm needs to adjust the configuration of numerous micro-grids in order to supply electric power with minimum generation cost for all customers under the distribution system.

The Effect of Sample and Particle Sizes in Discrete Particle Swarm Optimization for Simulation-based Optimization Problems (시뮬레이션 최적화 문제 해결을 위한 이산 입자 군집 최적화에서 샘플수와 개체수의 효과)

  • Yim, Dong-Soon
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.40 no.1
    • /
    • pp.95-104
    • /
    • 2017
  • This paper deals with solution methods for discrete and multi-valued optimization problems. The objective function of the problem incorporates noise effects generated in case that fitness evaluation is accomplished by computer based experiments such as Monte Carlo simulation or discrete event simulation. Meta heuristics including Genetic Algorithm (GA) and Discrete Particle Swarm Optimization (DPSO) can be used to solve these simulation based multi-valued optimization problems. In applying these population based meta heuristics to simulation based optimization problem, samples size to estimate the expected fitness value of a solution and population (particle) size in a generation (step) should be carefully determined to obtain reliable solutions. Under realistic environment with restriction on available computation time, there exists trade-off between these values. In this paper, the effects of sample and population sizes are analyzed under well-known multi-modal and multi-dimensional test functions with randomly generated noise effects. From the experimental results, it is shown that the performance of DPSO is superior to that of GA. While appropriate determination of population sizes is more important than sample size in GA, appropriate determination of sample size is more important than particle size in DPSO. Especially in DPSO, the solution quality under increasing sample sizes with steps is inferior to constant or decreasing sample sizes with steps. Furthermore, the performance of DPSO is improved when OCBA (Optimal Computing Budget Allocation) is incorporated in selecting the best particle in each step. In applying OCBA in DPSO, smaller value of incremental sample size is preferred to obtain better solutions.