• Title/Summary/Keyword: Discrete event

Search Result 531, Processing Time 0.025 seconds

Development of a simulation method for the subsea production system

  • Woo, Jong Hun;Nam, Jong Ho;Ko, Kwang Hee
    • Journal of Computational Design and Engineering
    • /
    • v.1 no.3
    • /
    • pp.173-186
    • /
    • 2014
  • The failure of a subsea production plant could induce fatal hazards and enormous loss to human lives, environments, and properties. Thus, for securing integrated design safety, core source technologies include subsea system integration that has high safety and reliability and a technique for the subsea flow assurance of subsea production plant and subsea pipeline network fluids. The evaluation of subsea flow assurance needs to be performed considering the performance of a subsea production plant, reservoir production characteristics, and the flow characteristics of multiphase fluids. A subsea production plant is installed in the deep sea, and thus is exposed to a high-pressure/ low-temperature environment. Accordingly, hydrates could be formed inside a subsea production plant or within a subsea pipeline network. These hydrates could induce serious damages by blocking the flow of subsea fluids. In this study, a simulation technology, which can visualize the system configuration of subsea production processes and can simulate stable flow of fluids, was introduced. Most existing subsea simulations have performed the analysis of dynamic behaviors for the installation of subsea facilities or the flow analysis of multiphase flow within pipes. The above studies occupy extensive research areas of the subsea field. In this study, with the goal of simulating the configuration of an entire deep sea production system compared to existing studies, a DES-based simulation technology, which can logically simulate oil production processes in the deep sea, was analyzed, and an implementation example of a simplified case was introduced.

An Efficient Hybrid Simulation Methodology Using the Game Physics Engine (물리엔진을 이용한 효과적인 하이브리드 시뮬레이션 방법론)

  • Lee, Wan-Bok;Ryu, Seuc-Ho
    • Journal of Digital Convergence
    • /
    • v.10 no.10
    • /
    • pp.539-544
    • /
    • 2012
  • Most of the man-made systems can be modeled as a hybrid system which consists of both the high-level and the low-level component model. High level model is responsible for decision-making and the low-level one takes control of the mechanical component parts. Since the two models requires different interpretation method according to their type, analysis of a hybrid system becomes a difficult job. For the Analysis of the high-level model, methods for discrete event system models such as FSM can be used. On the contrary, numerical analysis techniques are required for the low-level continuous-time system model. Since it becomes a difficult thing for a modeller specifies and develops both the two-level models altogether, we propose an efficient hybrid simulation method which employs a game physics engine that has been widely and successfully used in the area of game industry.

A Study on Simulation Model for RAM Analysis of SWRO Plant (SWRO 플랜트의 RAM 분석을 위한 시뮬레이션 모델 연구)

  • Kim, Yong Soo;Park, Jungwon;Choi, Sukho;Kang, Jun-Gyu
    • Journal of the Korea Society for Simulation
    • /
    • v.28 no.4
    • /
    • pp.1-10
    • /
    • 2019
  • The Sea Water Reverse Osmosis (SWRO) plant should take into account the availability of the plant from the design stage for long-term and continuous fresh water production. As it occurs, it is necessary to establish a corrective maintenance plan and preventive maintenance plan to maintain availability. In the field of complex engineering structures such as seawater desalination plants, it is difficult to estimate the reliability or availability of the system in a mathematical way. This study develops RAM analysis framework and model, and proposes discrete event simulation model as a application sowtware specialized for seawater desalination plant. Considering the characteristics of the plant maintenance, in case of corrective maintenance, we propose a preventive maintenance policy that not only repairs or replaces a single-broken part, but also simultaneously maintains all accessible parts according to the level of overhaul. A case study was conducted to estimate the availability of the system based on the field data of the seawater desalination plant in Korea and Saudi Arabia. The result was close to the expected availability of the plant.

Air Passenger Demand Forecasting and Baggage Carousel Expansion: Application to Incheon International Airport (항공 수요예측 및 고객 수하물 컨베이어 확장 모형 연구 : 인천공항을 중심으로)

  • Yoon, Sung Wook;Jeong, Suk Jae
    • Journal of Korean Society of Transportation
    • /
    • v.32 no.4
    • /
    • pp.401-409
    • /
    • 2014
  • This study deals with capacity expansion planning of airport infrastructure in view of economic validation that reflect construction costs and social benefits according to the reduction of passengers' delay time. We first forecast the airport peak-demand which has a seasonal and cyclical feature with ARIMA model that has been one of the most widely used linear models in time series forecasting. A discrete event simulation model is built for estimating actual delay time of passengers that consider the passenger's dynamic flow within airport infrastructure after arriving at the airport. With the trade-off relationship between cost and benefit, we determine an economic quantity of conveyor that will be expanded. Through the experiment performed with the case study of Incheon international airport, we demonstrate that our approach can be an effective method to solve the airport expansion problem with seasonal passenger arrival and dynamic operational aspects in airport infrastructure.

Feasibility Study on the Duration of Shiwha Techno-Valley through Simulation (시뮬레이션을 이용한 시화 테크노 벨리 공기 적정성 검토연구)

  • Kim Kyong-Ju;Kim Byeong-Soo;Chun Jin-Ku;Lee Jeong-Hun;Yun Won-Gun
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • autumn
    • /
    • pp.495-499
    • /
    • 2003
  • As an alternative to overcome the limitations of current popular schedule system such as Bar Chart, PERT, CPM in proving the feasibility of a given project schedule and duration, this research applies simulation to the 'Shiwha Techno-Valley project, and then reviews its usability in time management. Shiwha-Techno-Valley is a gigantic project requiring large number of equipment and resulting in traffic congestion. In particular, project site is located near the Shiwha industrial complex and Daeboo-Do tourist place. Therefore, current traffic needs should not be ignored. This research evaluates whether the project can be finished in a given time even if construction equipment increase in addition to the current traffic. Through the analysis of the simulation output, the research identifies the optimal resource input and the needs on alternative schedule for the project.

  • PDF

Application of Model-Based Systems Engineering to Large-Scale Multi-Disciplinary Systems Development (모델기반 시스템공학을 응용한 대형복합기술 시스템 개발)

  • Park, Joong-Yong;Park, Young-Won
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.8
    • /
    • pp.689-696
    • /
    • 2001
  • Large-scale Multi-disciplinary Systems(LMS) such as transportation, aerospace, defense etc. are complex systems in which there are many subsystems, interfaces, functions and demanding performance requirements. Because many contractors participate in the development, it is necessary to apply methods of sharing common objectives and communicating design status effectively among all of the stakeholders. The processes and methods of systems engineering which includes system requirement analysis; functional analysis; architecting; system analysis; interface control; and system specification development provide a success-oriented disciplined approach to the project. This paper shows not only the methodology and the results of model-based systems engineering to Automated Guided Transit(AGT) system as one of LMS systems, but also propose the extension of the model-based tool to help manage a project by linking WBS (Work Breakdown Structure), work organization, and PBS (Product Breakdown Structure). In performing the model-based functional analysis, the focus was on the operation concept of an example rail system at the top-level and the propulsion/braking function, a key function of the modern automated rail system. The model-based behavior analysis approach that applies a discrete-event simulation method facilitates the system functional definition and the test and verification activities. The first application of computer-aided tool, RDD-100, in the railway industry demonstrates the capability to model product design knowledge and decisions concerning key issues such as the rationale for architecting the top-level system. The model-based product design knowledge will be essential in integrating the follow-on life-cycle phase activities. production through operation and support, over the life of the AGT system. Additionally, when a new generation train system is required, the reuse of the model-based database can increase the system design productivity and effectiveness significantly.

  • PDF

Framework design of simulation-based ship production execution system(SPEXS) in a shipyard (시뮬레이션 기반 조선생산실행시스템 프레임워크 설계)

  • Lee, Kwang-Kook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.9
    • /
    • pp.1854-1864
    • /
    • 2011
  • Production planning is one of the most important activities in shipbuilding enterprises. Shop-floor supervisors and planners still do not have enough information to effectively analyze shop operations because of the difference between production planning and shop-floor scheduling. In this paper, process analysis was conducted between production planning and shop-floor control to clarify the difference, and the necessity of the manufacturing execution system(MES) was derived in a shipyard. Therefore, the simulation-based ship production execution system(SPEXS) was defined by analyzing characteristics of MES. The architectural functions of the system were deducted from the process of requirement analysis. The SPEXS' framework was constructed on the basis of the architectural functions. This framework will provide more reliable production schedules and allow engineers to plan and control shop operations in real-time.

Simulation Analysis for Verifying an Implementation Method of Higher-performed Packet Routing

  • Park, Jaewoo;Lim, Seong-Yong;Lee, Kyou-Ho
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 2001.10a
    • /
    • pp.440-443
    • /
    • 2001
  • As inter-network traffics grows rapidly, the router systems as a network component becomes to be capable of not only wire-speed packet processing but also plentiful programmability for quality services. A network processor technology is widely used to achieve such capabilities in the high-end router. Although providing two such capabilities, the network processor can't support a deep packet processing at nominal wire-speed. Considering QoS may result in performance degradation of processing packet. In order to achieve foster processing, one chipset of network processor is occasionally not enough. Using more than one urges to consider a problem that is, for instance, an out-of-order delivery of packets. This problem can be serious in some applications such as voice over IP and video services, which assume that packets arrive in order. It is required to develop an effective packet processing mechanism leer using more than one network processors in parallel in one linecard unit of the router system. Simulation analysis is also needed for verifying the mechanism. We propose the packet processing mechanism consisting of more than two NPs in parallel. In this mechanism, we use a load-balancing algorithm that distributes the packet traffic load evenly and keeps the sequence, and then verify the algorithm with simulation analysis. As a simulation tool, we use DEVSim++, which is a DEVS formalism-based hierarchical discrete-event simulation environment developed by KAIST. In this paper, we are going to show not only applicability of the DEVS formalism to hardware modeling and simulation but also predictability of performance of the load balancer when implemented with FPGA.

  • PDF

Study of the experimentation methodology for the counter fire operations by using discrete event simulation (이산사건 시뮬레이션을 활용한 대화력전 전투실험 방법론 연구)

  • Kim, Hyungkwon;Kim, Hyokyung;Kim, Youngho
    • Journal of the Korea Society for Simulation
    • /
    • v.25 no.2
    • /
    • pp.41-49
    • /
    • 2016
  • Counter Fire Operations can be characterized as having a system of systems that key features include situational awareness, command and control systems and highly responsive strike achieved by precision weapons. Current modeling methodology cannot provide an appropriate methodology for a system of systems and utilizes modeling and simulation tools to implement analytic options which can be time consuming and expensive. We explain developing methodology and tools for the effectiveness analysis of the counter fire operations under Network Centric Warfare Environment and suggest how to support a efficient decision making with the methodology and tools. Theater Counter Fire Operations tools consist of Enemy block, ISR block, C2 block and Shooter block. For the convenience of using by domain expert or non simulation expert, it is composed of the environments that each parameter and algorithm easily can be altered by user.

An Online Forklift Dispatching Algorithm Based on Minimal Cost Assignment Approach (최소 비용할당 기반 온라인 지게차 운영 알고리즘)

  • kwon, BoBae;Son, Jung-Ryoul;Ha, Byung-Hyun
    • Journal of the Korea Society for Simulation
    • /
    • v.27 no.2
    • /
    • pp.71-81
    • /
    • 2018
  • Forklifts in a shipyard lift and transport heavy objects. Tasks occur dynamically and the rate of the task occurrence changes over time. Especially, the rate of the task occurrence is high immediately after morning and afternoon business hours. The weight of objects varies according to task characteristic, and a forklift also has the workable or allowable weight limit. In this study, we propose an online forklift dispatching algorithm based on nearest-neighbor dispatching rule using minimal cost assignment approach in order to attain the efficient operations. The proposed algorithm considers various types of forklift and multiple jobs at the same time to determine the dispatch plan. We generate dummy forklifts and dummy tasks to handle unbalance in the numbers of forklifts and tasks by taking their capacity limits and weights. In addition, a method of systematic forklift selection is also devised considering the condition of the forklift. The performance indicator is the total travel distance and the average task waiting time. We validate our approach against the priority rule-based method of the previous study by discrete-event simulation.