• Title/Summary/Keyword: Discrete element method

Search Result 498, Processing Time 0.026 seconds

Dynamic Analysis of Fabric in a Rotating Horizontal Drum Using the Discrete Element Method (DEM을 이용한 회전원통에서의 세탁물의 동역학적 해석)

  • Park, Jun-Young;Wassgren, Carl R.
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1839-1844
    • /
    • 2003
  • In order to provide a tool for designing more efficient methods of mixing fabric, a simplified discrete element computational model was developed for modeling fabric dynamics in a rotating horizontal drum. Because modeling the interactions between actual pieces of fabric is quite complex, a simplified model was developed where individual pieces of bundled fabric are represented by spherical particles. The simulations are used to investigate fabric bundle kinematics, the power required to drive the rotating drum, and the power dissipated through normal and tangential contacts. Parametric studies indicate only fill percentage, drum rotation speed, and friction coefficient play significant roles in the fabric bundle dynamics.

  • PDF

Structural Analysis of the Deck of a Dump Truck Based on Bulk Material Behavior using the Discrete Element Method (이산요소법을 이용한 벌크 재료 시뮬레이션에 의한 덤프 트럭 데크 하중산출에 대한 연구)

  • Ryu, Seung Hun;Woo, Ho Kil
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.33 no.3
    • /
    • pp.187-192
    • /
    • 2020
  • To reduce fuel consumption by reducing the weight of the deck of a dump truck and to design an eco-friendly deck, accurate structural analysis is required. To date, the load on the deck has been calculated based on the hydrostatic pressure or by applying the earth pressure theory. However, these methods cannot be used to determine the non-uniformity of the load on the deck. Load distribution varies depending on the size distribution and interaction of aggregate particles. Compared with the finite element method, the discrete element method can simulate the behavior of aggregate particles more effectively. In this study, major properties were obtained by measuring bulk density and repose. The deck of a 15 ton dump truck was simulated using the obtained properties and bumping, breaking, and turning load conditions were applied. EDEM, which is a discrete element analysis software, was employed. The stress and strain distribution of the deck were calculated by NASTRAN and compared with the measured values. The study revealed that the results derived from a DEM simulation were more accurate than those based on mathematical assumption.

Development of a Coarse Lunar Soil Model Using Discrete Element Method (이산요소법을 이용한 성긴 달토양 수치해석모델 개발)

  • Jeong, Hyun-Jae;Lim, Jae Hyuk;Kim, Jin-Won
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.1
    • /
    • pp.26-34
    • /
    • 2019
  • In this paper, a coarse lunar soil model is developed using discrete element method and its computed physical properties are compared with those of the actual lunar soil for its validation. The surface of the actual moon consists of numerous craters and rocks of various sizes, and it is covered with fine dry soil which seriously affects the landing stability of the lunar lander. Therefore, in consideration of the environment of the lunar regolith, the lunar soil is realized using discrete element method. To validate the coarse model of lunar soil, the simulations of the indentation test and the direct shear test are performed to check the physical properties(indentation depth, cohesion stress, internal friction angle). To examine the performance of the proposed model, the drop simulation of finite element model of single-leg landing gear is performed on proposed soil models with different particle diameters. The impact load delivered to the strut of the lander is compared to test results.

Development of Standard Hill Technology for Image Encryption over a 256-element Body

  • JarJar, Abdellatif
    • Journal of Multimedia Information System
    • /
    • v.8 no.1
    • /
    • pp.45-56
    • /
    • 2021
  • This document traces the new technologies development based on a deep classical Hill method improvement. Based on the chaos, this improvement begins with the 256 element body construction, which is to replace the classic ring used by all encryption systems. In order to facilitate the application of algebraic operators on the pixels, two substitution tables will be created, the first represents the discrete logarithm, while the second represents the discrete exponential. At the same time, a large invertible matrix whose structure will be explained in detail will be the subject of the advanced classical Hill technique improvement. To eliminate any linearity, this matrix will be accompanied by dynamic vectors to install an affine transformation. The simulation of a large number of images of different sizes and formats checked by our algorithm ensures the robustness of our method.

Evaluation of Stability of Lining Systems of Landfill Using Discrete Element Method (개별요소법을 사용한 매립지 사면 차수 시스템의 안정성 평가)

  • 박현일;이승래;정구영
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.2
    • /
    • pp.87-95
    • /
    • 2003
  • In this paper, the discrete element method was applied to evaluate the stability of composite cover and lining system of landfill. This method is capable of estimating the distribution of tensile force and shear stress mobilized in each liner component and its interfaces, based on a relationship of force and displacement. It was assumed that the cover soil and geomembrane were comprised of slices connected with elastoplastic Winkler springs and tensile spring respectively. Parametric study using this method was performed and compared with other techniques based on limit equilibrium method fur the example analysis.

FULLY DISCRETE MIXED FINITE ELEMENT METHOD FOR A QUASILINEAR STEFAN PROBLEM WITH A FORCING TERM IN NON-DIVERGENCE FORM

  • Lee, H.Y.;Ohm, M.R.;Shin, J.Y.
    • Journal of applied mathematics & informatics
    • /
    • v.24 no.1_2
    • /
    • pp.191-207
    • /
    • 2007
  • Based on a mixed Galerkin approximation, we construct the fully discrete approximations of $U_y$ as well as U to a single-phase quasilinear Stefan problem with a forcing term in non-divergence form. We prove the optimal convergence of approximation to the solution {U, S} and the superconvergence of approximation to $U_y$.

Study on the stresses distribution of ballast bed using DEM (Discrete Element Method) Analysis (DEM을 이용한 자갈도상의 응력분포에 관한 연구)

  • Kim Dae-Sang;Lee Su-Hyung;Lee Sung-Hyuk;Lee Sang-Bae
    • Proceedings of the KSR Conference
    • /
    • 2005.11a
    • /
    • pp.878-883
    • /
    • 2005
  • Sleeper, the ballast, and ballast mat in the high-speed railroad line are modelled using a two-dimensional discrete element method to generate circle and line elements. Stress transfer mechanism from the sleeper to the subgrade via the ballast is analyzed. The behavior of ballast bed of the high-speed railroad line is also accessed with the model.

  • PDF

Discrete element numerical simulation of dynamic strength characteristics of expanded polystyrene particles in lightweight soil

  • Wei Zhou;Tian-shun Hou;Yan Yang;Yu-xin Niu;Ya-sheng Luo;Cheng Yang
    • Geomechanics and Engineering
    • /
    • v.34 no.5
    • /
    • pp.577-595
    • /
    • 2023
  • A dynamic triaxial discrete element numerical model of lightweight soil was established using the discrete element method to study the microscopic mechanism of expanded polystyrene (EPS) particles in the soil under cyclic loading. The microscopic parameters of the discrete element model of the lightweight soil were calibrated depending on the dynamic triaxial test hysteresis curves. Based on the calibration results, the effects of the EPS particles volume ratio and amplitude on the contact force, displacement field, and velocity field of the lightweight soil under different accumulated strains were studied. The results showed that the hysteresis curves of lightweight soil exhibit nonlinearity, hysteresis, and strain accumulation. The strain accumulated in remolded soil is mainly tensile strain, and that in lightweight soil is mainly compressive strain. As the volume ratio of EPS particles increased, the contact force first increased and then decreased, and the displacement and velocity of the particles increased accordingly. With an increase in amplitude, the dynamic stress of the particle system increased, and the accumulation rate of the dynamic strain of the samples also increased. At 5% compressive strain, the contact force of the particles changed significantly and the number of particles deflected in the direction of velocity also increased considerably. These results indicated that the cemented structure of the lightweight soil began to fail at a compressive strain of 5%. Thus, a compressive strain of 5% is more reasonable than the dynamic strength failure standard of lightweight soil.

Flow and Scour Analysis Around Monopole of Fixed Offshore Platform Using Method that Couples Computational Fluid Dynamics and Discrete Element Method (CFD-DEM 연계기법을 활용한 고정식 해양구조물의 모노파일 주위 유동 및 세굴해석)

  • Song, Seongjin;Jeon, Wooyoung;Park, Sunho
    • Journal of Ocean Engineering and Technology
    • /
    • v.33 no.3
    • /
    • pp.245-251
    • /
    • 2019
  • When an offshore foundation is exposed to waves and currents, local scour could develop around a pile and even lead to structural failure. Therefore, understanding and predicting the scour due to sediment transport around foundations are important in the engineering design. In this study, the flow and scour around a monopole foundation exposed to a current were investigated using a method that coupled the computational fluid dynamics (CFD) and discrete element method (DEM). The open source computation fluid dynamics library OpenFOAM and a sediment transport library were coupled in the OpenFOAM platform. The incipient motion of the particle was validated. The flow fields and sediment transport around the monopole were simulated. The scour depth development was simulated and compared with existing experimental data. For the upstream scour hole, the equilibrium scour depth could be reproduced qualitatively, and it was underestimated by about 23%.