• Title/Summary/Keyword: Discrete element analysis

Search Result 344, Processing Time 0.026 seconds

A new hybrid method for reliability-based optimal structural design with discrete and continuous variables

  • Ali, Khodam;Mohammad Saeid, Farajzadeh;Mohsenali, Shayanfar
    • Structural Engineering and Mechanics
    • /
    • v.85 no.3
    • /
    • pp.369-379
    • /
    • 2023
  • Reliability-Based Design Optimization (RBDO) is an appropriate framework for obtaining optimal designs by taking uncertainties into account. Large-scale problems with implicit limit state functions and problems with discrete design variables are two significant challenges to traditional RBDO methods. To overcome these challenges, this paper proposes a hybrid method to perform RBDO of structures that links Firefly Algorithm (FA) as an optimization tool to advanced (finite element) reliability methods. Furthermore, the Genetic Algorithm (GA) and the FA are compared based on the design cost (objective function) they achieve. In the proposed method, Weighted Simulation Method (WSM) is utilized to assess reliability constraints in the RBDO problems with explicit limit state functions. WSM is selected to reduce computational costs. To performing RBDO of structures with finite element modeling and implicit limit state functions, a First-Order Reliability Method (FORM) based on the Direct Differentiation Method (DDM) is utilized. Four numerical examples are considered to assess the effectiveness of the proposed method. The findings illustrate that the proposed RBDO method is applicable and efficient for RBDO problems with discrete and continuous design variables and finite element modeling.

STABILIZED-PENALIZED COLLOCATED FINITE VOLUME SCHEME FOR INCOMPRESSIBLE BIOFLUID FLOWS

  • Kechkar, Nasserdine;Louaar, Mohammed
    • Journal of the Korean Mathematical Society
    • /
    • v.59 no.3
    • /
    • pp.519-548
    • /
    • 2022
  • In this paper, a stabilized-penalized collocated finite volume (SPCFV) scheme is developed and studied for the stationary generalized Navier-Stokes equations with mixed Dirichlet-traction boundary conditions modelling an incompressible biological fluid flow. This method is based on the lowest order approximation (piecewise constants) for both velocity and pressure unknowns. The stabilization-penalization is performed by adding discrete pressure terms to the approximate formulation. These simultaneously involve discrete jump pressures through the interior volume-boundaries and discrete pressures of volumes on the domain boundary. Stability, existence and uniqueness of discrete solutions are established. Moreover, a convergence analysis of the nonlinear solver is also provided. Numerical results from model tests are performed to demonstrate the stability, optimal convergence in the usual L2 and discrete H1 norms as well as robustness of the proposed scheme with respect to the choice of the given traction vector.

Application of Laboratory Pressurized Vane Shear Test and Discrete Element Method for Determination of Foam-conditioned Soil Properties (폼제에 의해 개선된 흙의 물성 도출을 위한 실내 가압 베인 전단시험 및 개별요소법의 적용)

  • Kang, Tae-Ho;Lee, Hyobum;Choi, Hangseok;Choi, Soon-Wook;Chang, Soo-Ho;Lee, Chulho
    • Journal of the Korean Geosynthetics Society
    • /
    • v.19 no.4
    • /
    • pp.65-74
    • /
    • 2020
  • In earth pressure balance (EPB) shield TBM tunnelling, the application of soil conditioning which improves properties of the excavated muck by additives injection, is generally used for enhancing the performance of TBM. Therefore it is important to apply the soil conditioning in the numerical model which simulates excavation performance of TBM equipment, but related studies on a method that simulates soil conditioning are insufficient to date. Accordingly, in this study, an laboratory pressurized vane test apparatus was devised to evaluate the characteristics of conditioned soil. Using the apparatus, the vane shear tests were performed on foam-conditioned soil with different shear rates, and the test was numerically simulated with discrete element method (DEM). Finally, the contact properties of particles in DEM were determined by comparing the results of test and analysis, and it indicates that the applicability of pressurized vane test and DEM model for reproducing soil conditioning in TBM excavation model with DEM.

Structural Characteristics Evaluation Considering Construction Circumstances of Cheomseongdae (첨성대의 축조현황을 고려한 구조적 특성평가)

  • Kim, Ho-Soo;Kim, Jung-Hwan
    • Journal of Korean Association for Spatial Structures
    • /
    • v.15 no.3
    • /
    • pp.69-76
    • /
    • 2015
  • Cheomseongdae is the masonry stone structure with the cultural and historical values. But, this structure has the various damages such as cracks, gaps, slope variations and ground subsidence. So, the interests for the safety security in the structural parts have been increased. Therefore, this study performs the structural modelling which considers the several damage cases, and then evaluates the structural behavior characteristics through the discrete element analysis. Especially, this study checks the swelling and displacement gap of the whole structure and the separation between the neighboring members.

Numerical analysis of a complex slope instability: Pseudo-wedge failure

  • Babanouri, Nima;Sarfarazi, Vahab
    • Geomechanics and Engineering
    • /
    • v.15 no.1
    • /
    • pp.669-676
    • /
    • 2018
  • The "pseudo-wedge" failure is a name for a complex instability occurring at the Sarcheshmeh open-pit mine (Iran). The pseudo-wedge failure contains both the rock bridge failure and sliding along pre-existing discontinuities. In this paper, a cross section of the failure area was first modeled using a bonded-particle method. The results indicated development of tensile cracks at the slope toe which explains the freedom of pseudo-wedge blocks to slide. Then, a three-dimensional discrete element method was used to perform a block analysis of the instability. The technique of shear strength reduction was used to calculate the factor of safety. Finally, the influence of geometrical characteristics of the mine wall on the pseudo-wedge failure was investigated. The safety factor significantly increases as the dip and dip direction of the wall decrease, and reaches an acceptable value with a 10-degree decrease of them.

The effectiveness of geosynthetic reinforcement, tamping, and stoneblowing of railtrack ballast beds under dynamic loading: DEM analysis

  • Lobo-Guerrero, Sebastian;Vallejo, Luis E.
    • Geomechanics and Engineering
    • /
    • v.2 no.3
    • /
    • pp.161-176
    • /
    • 2010
  • Discrete Element Method (DEM) simulations were developed to investigate the effectiveness of geosynthetic reinforcement and the effectiveness of maintenance techniques performed on a simulated ballast bed subjected to dynamic loading. The results from four samples subjected each one to a total of 425 load cycles are presented: one unreinforced and unmaintained sample, one unmaintained but reinforced sample, one unreinforced sample subjected to maintenance in the form of stoneblowing after 200 load cycles, and one unreinforced sample subjected to maintenance in the form of tamping after 200 load cycles. The obtained values of permanent deformation as a function of the applied number of load cycles for the four cases are presented together allowing a comparison of the effectiveness of each technique. Moreover, snapshots of the simulated track sections are presented at different moments of the simulations. The simulations indicated that the geosynthetic reinforcement may not be beneficial for the analyzed case while stoneblowing was the most effective maintenance technique.

Development of a Pre/Post Processor Program for the Analysis of the Passenger Flow based on Discrete Element Method(DEM) (DEM에 기초한 여객유동 해석을 위한 전/후처리 프로그램 개발)

  • Kim, Chi-Gyeom;Won, Chan-Shik;Hur, Nahm-Keon;Nam, Seong-Won
    • Proceedings of the SAREK Conference
    • /
    • 2008.11a
    • /
    • pp.475-480
    • /
    • 2008
  • A pre/post processor program based GUI(Graphic User Interface) by using the MFC and OpenGL library in the Windows OS have been developed for the analysis of the passenger flow. Using this program, users are able to generate and modify the meshes of multi-storied subway station, set all the parameters for the solver, and obtain the results of the simulation such as transient passenger motions and passenger streak lines in 3-dimensional graphic view.

  • PDF

Vibration characteristic analysis of sandwich cylindrical shells with MR elastomer

  • Yeh, Jia-Yi
    • Smart Structures and Systems
    • /
    • v.18 no.2
    • /
    • pp.233-247
    • /
    • 2016
  • The vibration characteristic analysis of sandwich cylindrical shells subjected with magnetorheological (MR) elastomer and constraining layer are considered in this study. And, the discrete finite element method is adopted to calculate the vibration and damping characteristics of the sandwich cylindrical shell system. The effects of thickness of the MR elastomer, constraining layer, applied magnetic fields on the vibration characteristics of the sandwich shell system are also studied in this paper. Additionally, the rheological properties of the MR elastomer can be changed by applying various magnetic fields and the properties of the MR elastomer are described by complex quantities. The natural frequencies and modal loss factor of the sandwich cylindrical shells are calculated for many designed parameters. The core layer of MR elastomer is found to have significant effects on the damping behavior of the sandwich cylindrical shells.

Deflection of battened beams with shear and discrete effects

  • Li, Ji-liang;Chen, Jian-kang
    • Structural Engineering and Mechanics
    • /
    • v.59 no.5
    • /
    • pp.921-932
    • /
    • 2016
  • This paper presents a theoretical analysis for determining the transverse deflection of simply supported battened beams subjected to a uniformly distributed transverse quasi-static load. The analysis considers not only the shear effect but also the discrete effect of battens on the transverse deflection of the battened beam. The analytical solution is obtained using the principle of minimum potential energy. Numerical validation of the present analytical solution is accomplished using finite element methods. The present analytical solution shows that the shear effect on the transverse deflection of battened beams increases with the cross-section area of the main member but decreases with the cross-section area of the batten. The longer the battened beam is, or the larger the moment of inertia of the main member is, the smaller the shear effect will be.

Validation of a non-linear hinge model for tensile behavior of UHPFRC using a Finite Element Model

  • Mezquida-Alcaraz, Eduardo J.;Navarro-Gregori, Juan;Lopez, Juan Angel;Serna-Ros, Pedro
    • Computers and Concrete
    • /
    • v.23 no.1
    • /
    • pp.11-23
    • /
    • 2019
  • Nowadays, the characterization of Ultra-High Performance Fiber-Reinforced Concrete (UHPFRC) tensile behavior still remains a challenge for researchers. For this purpose, a simplified closed-form non-linear hinge model based on the Third Point Bending Test (ThirdPBT) was developed by the authors. This model has been used as the basis of a simplified inverse analysis methodology to derive the tensile material properties from load-deflection response obtained from ThirdPBT experimental tests. In this paper, a non-linear finite element model (FEM) is presented with the objective of validate the closed-form non-linear hinge model. The state determination of the closed-form model is straightforward, which facilitates further inverse analysis methodologies to derive the tensile properties of UHPFRC. The accuracy of the closed-form non-linear hinge model is validated by a robust non-linear FEM analysis and a set of 15 Third-Point Bending tests with variable depths and a constant slenderness ratio of 4.5. The numerical validation shows excellent results in terms of load-deflection response, bending curvatures and average longitudinal strains when resorting to the discrete crack approach.