• Title/Summary/Keyword: Discrete biphasic free energy relationship

Search Result 3, Processing Time 0.014 seconds

Kinetics and Mechanism of the Pyridinolysis of Diethyl Isothiocyanophosphate in Acetonitrile

  • Adhikary, Keshab Kumar;Lee, Hai-Whang
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.3
    • /
    • pp.1042-1046
    • /
    • 2012
  • The kinetics and mechanism of the pyridinolysis ($XC_5H_4N$) of diethyl isothiocyanophosphate are investigated in acetonitrile at $55.0^{\circ}C$. The Hammett and Bronsted plots for substituent X variations in the nucleophiles exhibit the two discrete slopes with a break region between X = 3-Ac and 4-Ac. These are interpreted to indicate a mechanistic change at the break region from a concerted to a stepwise mechanism with rate-limiting expulsion of the isothiocyanate leaving group from a trigonal bipyramidal pentacoordinated intermediate. The relatively large ${\beta}_x$ values with more basic and less basic pyridines imply much greater fraction of frontside nucleophilic attack TSf than that of backside attack TSb.

Kinetics and Mechanism of the Pyridinolysis of Dimethyl Isothiocyanophosphate in Acetonitrile

  • Adhikary, Keshab Kumar;Lee, Hai-Whang
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.7
    • /
    • pp.2260-2264
    • /
    • 2012
  • The kinetics and mechanism of the pyridinolysis ($XC_5H_4N$) of dimethyl isothiocyanophosphate are investigated in acetonitrile at $55.0^{\circ}C$. The Hammett and Br$\ddot{o}$nsted plots for substituent X variations in the nucleophiles exhibit two discrete slopes with a break region between X = 3-Ac and 4-Ac. These are interpreted to indicate a mechanistic change at the break region from a concerted to a stepwise mechanism with a rate-limiting expulsion of the isothiocyanate leaving group from the intermediate. The relatively large ${\beta}x$ values imply much greater fraction of frontside nucleophilic attack TSf than that of backside attack TSb. The steric effects of the two ligands play an important role to determine the pyridinolysis rates of isothiocyanophosphates.