• Title/Summary/Keyword: Discrete Wavelet

Search Result 664, Processing Time 0.036 seconds

Nuclear Data Compression and Reconstruction via Discrete Wavelet Transform

  • Park, Young-Ryong;Cho, Nam-Zin
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1997.10a
    • /
    • pp.225-230
    • /
    • 1997
  • Discrete Wavelet Transforms (DWTs) are recent mathematics, and begin to be used in various fields. The wavelet transform can be used to compress the signal and image due to its inherent properties. We applied the wavelet transform compression and reconstruction to the neutron cross section data. Numerical tests illustrate that tile signal compression using wavelet is very effective to reduce the data saving spaces.

  • PDF

Wavelet Algorithms for Remote Sensing

  • CHAE Gee Ju;CHOI Kyoung Ho
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.224-227
    • /
    • 2004
  • From 1980's, the DWT(Discrete Wavelet Transform) is applied to the data/image processing. Many people use the DWT in remote sensing for diversity purposes and they are satisfied with the wavelet theory. Though the algorithm for wavelet is very diverse, many people use the standard wavelet such as Daubechies D4 wavelet and biorthogonal 9/7 wavelet. We will overview the wavelet theory for discrete form which can be applied to the image processing. First, we will introduce the basic DWT algorithm and review the wavelet algorithm: EZW (Embedded Zerotree Wavelet), SPIHT(Set Partitioning in Hierarchical Trees), Lifting scheme, Curvelet, etc. Finally, we will suggest the properties of wavelet algorithm; and wavelet filter for each image processing in remote sensing.

  • PDF

A Study Of The Meaningful Speech Sound Block Classification Based On The Discrete Wavelet Transform (Discrete Wavelet Transform을 이용한 음성 추출에 관한 연구)

  • Baek, Han-Wook;Chung, Chin-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 1999.07g
    • /
    • pp.2905-2907
    • /
    • 1999
  • The meaningful speech sound block classification provides very important information in the speech recognition. The following technique of the classification is based on the DWT (discrete wavelet transform), which will provide a more fast algorithm and a useful, compact solution for the pre-processing of speech recognition. The algorithm is implemented to the unvoiced/voiced classification and the denoising.

  • PDF

Advanced Sound Source Localization Study Using De-noising Filter based on the Discrete Wavelet Transform(DWT) (이산 웨이블릿 변환 기반 디-노이징 필터를 이용한 향상된 음원 위치 추정 연구)

  • Hwang, Bo-Yeon;Jung, Jae-Hoon;Lee, Jang-Myung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.12
    • /
    • pp.1185-1192
    • /
    • 2015
  • In this paper, a study of advanced sound source localization is conducted by eliminating the noise of the sound source using the discrete wavelet transform. And experiments are conducted to evaluate the performance of the proposed system that the mobile robot follows sound source stably. In addition, we compare the position estimation performance by applying a discrete wavelet transform to improve the reliability of the sound signal. The experimental results reveal that the de-nosing filter which removes the noise component in sound source can make the performance of position estimation more precisely and help the mobile robot distinguish the objective sound source clearly.

An Application of k-domain Discrete Wavelet Transform for the Efficient Representation of Green Function (파수영역 이산 웨이블릿 변환을 이용한 효율적인 그린함수 표현에 관한 연구)

  • 주세훈;김형동
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.12 no.7
    • /
    • pp.1110-1114
    • /
    • 2001
  • The discrete wavelet concept in the k-domain is applied to efficiently represent Green function of integral equations. Application of discrete wavelet concept to Green function in the k-domain can be implemented equivalently by using spatial domain variable-sized windows. The proposed method consists of constant Q-filtering, changing the center of coordinates, and transforming spatially filtered Green functions into those in the k-domain. A mathematical expression of Green function based on the discrete wavelet concept is derived and its characteristics are discussed.

  • PDF

A fast M-band discrete wavelet transform algorithm using factorization of lossless matrix when the length of bases equals to 2M (기저의 길이 L=2M인 경우 무손실 행렬의 분해를 이용한 고속 M-대역 이산 웨이브렛 변환 알고리즘)

  • 권상근;이동식
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.22 no.12
    • /
    • pp.2706-2713
    • /
    • 1997
  • The fast implementation algorithm of M-band discrete wavelet transform is propsed using the factorization of lossless matrix when the length of discrete orthogonal wavelet bases equals to 2M. In computational complexity when direct filtering method is employed, the number of multiplicationand addition is (2M$^{2}$) and (2M$^{2}$ -M), respectively. But by proposed algorithm, it can be reduced to (M$^{2}$+M) and (M$^{2}$+2M-1), respectively. and it is possible to reduce the compuatational complexity further when unitary matrix employed to design the discrete or thogonal wavelet basis has the fast algorithm.

  • PDF

Curve Clustering in Microarray

  • Lee, Kyeong-Eun
    • Journal of the Korean Data and Information Science Society
    • /
    • v.15 no.3
    • /
    • pp.575-584
    • /
    • 2004
  • We propose a Bayesian model-based approach using a mixture of Dirichlet processes model with discrete wavelet transform, for curve clustering in the microarray data with time-course gene expressions.

  • PDF

Coherent Structure Extraction from 3-Dimensional Isotropic Turbulence Velocity Field Using Discrete Wavelet Transform (이산 Wavelet 변환을 이용한 3차원 등방성 난류속도장의응집구조 추출)

  • Lee, Sang-Hwan;Jung, Jae-Yoon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.9
    • /
    • pp.1032-1041
    • /
    • 2004
  • In this study we decompose the 3-dimensional velocity field of isotropic turbulent flow into the coherent and the incoherent structure using the discrete wavelet. It is shown that the coherent structure, 3% wavelet modes, has 98% energy and 88% enstrophy and its statistical characteristics are almost same as the original turbulence structure. And it is confirmed that the role of the coherent structure is that it produces the turbulent kinetic energy at the inertia range then transfers energy to the dissipation range. The incoherent structure, with residual wavelet modes, is uncorrelated and has the Gaussian probability density function but it dissipates the kinetic energy in dissipation range. On the procedure, we propose a new but easy way to get the threshold by applying the energy partition percentage concept about coherent structure. The vorticity field extracted from the wavelet-decomposed velocity field has the same structure as the result of the precedent studies which decomposed vorticity field directly using wavelet. Therefore it has been shown that velocity and vorticity field are on the interactive condition.

A VLSI Design of Discrete Wavelet Transform and Scalar Quantization for JPEG2000 CODEC (JPEG2000 CODEC을 위한 DWT및 양자화기 VLSI 설계)

  • 이경민;김영민
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.40 no.1
    • /
    • pp.45-51
    • /
    • 2003
  • JPEG200, a new international standard for still image compression based on wavelet and bit-plane coding techniques, is developed. In this paper, we design the DWT(Discrete Wavelet Transform) and quantizer for JPEG2000 CODEC. DWT handles both lossy and lossless compression using the same transform-based framework: The Daubechies 9/7 and 5/3 transforms, and quantizer is implemented as SQ(Scalar Quantization). The architecture of the proposed DWT and SQ are synthesized and verified using Xilinx FPGA technology. It operates up to 30MHz, and executes algorithms of wavelet transform and quantization for VGA 10 frame per second.

SWT -based Wavelet Filter Application for De-noising of Remotely Sensed Imageries

  • Yoo Hee-Young;Lee Kiwon;Kwon Byung-Doo
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.505-508
    • /
    • 2005
  • Wavelet scheme can be applied to the various remote sensing problems: conventional multi-resolution image analysis, compression of large image sets, fusion of heterogeneous sensor image and segmentation of features. In this study, we attempted wavelet-based filtering and its analysis. Traditionally, statistical methods and adaptive filter are used to manipulate noises in the image processing procedure. While we tried to filter random noise from optical image and radar image using Discrete Wavelet Transform (DW1) and Stationary Wavelet Transform (SW1) and compared with existing methods such as median filter and adaptive filter. In result, SWT preserved boundaries and reduced noises most effectively. If appropriate thresholds are used, wavelet filtering will be applied to detect road boundaries, buildings, cars and other complex features from high-resolution imagery in an urban environment as well as noise filtering

  • PDF