• Title/Summary/Keyword: Discrete Support

Search Result 165, Processing Time 0.031 seconds

Quaternion Markov Splicing Detection for Color Images Based on Quaternion Discrete Cosine Transform

  • Wang, Jinwei;Liu, Renfeng;Wang, Hao;Wu, Bin;Shi, Yun-Qing
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.7
    • /
    • pp.2981-2996
    • /
    • 2020
  • With the increasing amount of splicing images, many detection schemes of splicing images are proposed. In this paper, a splicing detection scheme for color image based on the quaternion discrete cosine transform (QDCT) is proposed. Firstly, the proposed quaternion Markov features are extracted in QDCT domain. Secondly, the proposed quaternion Markov features consist of global and local quaternion Markov, which utilize both magnitude and three phases to extract Markov features by using two different ways. In total, 2916-D features are extracted. Finally, the support vector machine (SVM) is used to detect the splicing images. In our experiments, the accuracy of the proposed scheme reaches 99.16% and 97.52% in CASIA TIDE v1.0 and CASIA TIDE v2.0, respectively, which exceeds that of the existing schemes.

A study on the co-operative modeling between discrete-event system and continuous-time system for UAV system (UAV를 위한 이산사건 및 연속시간 시스템간의 연동 모델링에 대한 연구)

  • Kang, Kwang-Chun;Choi, Sung-Do;You, Yong-Jun
    • Journal of the Korea Society for Simulation
    • /
    • v.15 no.1
    • /
    • pp.43-50
    • /
    • 2006
  • The major objective of this paper is to propose a hybrid simulation environment for autonomous UAV system by integrating the continuous-time model with discrete-event model. Proposed system is able to support high autonomous behavior by combining the planner, recognizer, and controller model to deal with the HL20 AIRPLANE model. Thus, the high level decision may be efficiently issued even upon the unexpected circumstance. The proposed system model has been successfully verified by several simulation test performed on the DEVS simulation S/W environment.

  • PDF

Effective Simulation Modeling Formalism for Autonomous Control Systems (자율제어시스템의 효과적인 시뮬레이션 모델링 형식론)

  • Chang, Dae Soon;Cho, Kang H;Cheon, Sanguk;Lee, Sang Jin;Park, SangChul
    • Journal of Korean Society for Quality Management
    • /
    • v.46 no.4
    • /
    • pp.973-982
    • /
    • 2018
  • Purpose: The purpose of this study is to develop an effective simulation modeling formalism for autonomous control systems, such as unmanned aerial vehicles and unmanned surface vehicles. The proposed simulation modeling formalism can be used to evaluate the quality and effectiveness of autonomous control systems. Methods: The proposed simulation modeling formalism is developed by extending the classic DEVS (Discrete Event Systems Specifications) formalism. The main advantages of the classic DEVS formalism includes its rigorous formal definition as well as its support for the specification of discrete event models in a hierarchical and modular manner. Results: Although the classic DEVS formalism has been a popular modeling tool, it has limitations in describing an autonomous control system which needs to make decisions by its own. As a result, we proposed an extended DEVS formalism which enables the effective description of internal decisions according to its conditional variables. Conclusion: The extended DEVS formalism overcomes the limitations of the classic DEVS formalism, and it can be used for the effectiveness simulation of autonomous weapon systems.

Study on the digitalization of trip equations including dynamic compensators for the Reactor Protection System in NPPs by using the FPGA

  • Kwang-Seop Son;Jung-Woon Lee;Seung-Hwan Seong
    • Nuclear Engineering and Technology
    • /
    • v.55 no.8
    • /
    • pp.2952-2965
    • /
    • 2023
  • Advanced reactors, such as Small Modular Reactors or existing Nuclear Power Plants, often use Field Programmable Gate Array (FPGA) based controllers in new Instrumentation and Control (I&C) system architectures or as an alternative to existing analog-based I&C systems. Compared to CPU-based Programmable Logic Controllers (PLCs), FPGAs offer better overall performance. However, programming functions on FPGAs can be challenging due to the requirement for a hardware description language that does not explicitly support the operation of real numbers. This study aims to implement the Reactor Trip (RT) functions of the existing analog-based Reactor Protection System (RPS) using FPGAs. The RT equations for Overtemperature delta Temperature and Overpower delta Temperature involve dynamic compensators expressed with the Laplace transform variable, 's', which is not directly supported by FPGAs. To address this issue, the trip equations with the Laplace variable in the continuous-time domain are transformed to the discrete-time domain using the Z-transform. Additionally, a new operation based on a relative value for the equation range is introduced for the handling of real numbers in the RT functions. The proposed approach can be utilized for upgrading the existing analog-based RPS as well as digitalizing control systems in advanced reactor systems.

Adaptive threshold for discrete fourier transform-based channel estimation in generalized frequency division multiplexing system

  • Vincent Vincent;Effrina Yanti Hamid;Al Kautsar Permana
    • ETRI Journal
    • /
    • v.46 no.3
    • /
    • pp.392-403
    • /
    • 2024
  • Even though generalized frequency division multiplexing is an alternative waveform method expected to replace the orthogonal frequency division multiplexing in the future, its implementation must alleviate channel effects. Least-squares (LS), a low-complexity channel estimation technique, could be improved by using the discrete Fourier transform (DFT) without increasing complexity. Unlike the usage of the LS method, the DFT-based method requires the receiver to know the channel impulse response (CIR) length, which is unknown. This study introduces a simple, yet effective, CIR length estimator by utilizing LS estimation. As the cyclic prefix (CP) length is commonly set to be longer than the CIR length, it is possible to search through the first samples if CP is larger than a threshold set using the remaining samples. An adaptive scale is also designed to lower the error probability of the estimation, and a simple signal-to-interference-noise ratio estimation is also proposed by utilizing a sparse preamble to support the use of the scale. A software simulation is used to show the ability of the proposed system to estimate the CIR length. Due to shorter CIR length of rural area, the performance is slightly poorer compared to urban environment. Nevertheless, satisfactory performance is shown for both environments.

Simulation Reconfiguration using Entity Plug-in approach for Weapon System Effectiveness Analysis (무기체계 효과도 분석을 위한 개체 플러그인 방식의 모의 재구성 연구)

  • Kim, Taeyoung
    • Journal of the Korea Society for Simulation
    • /
    • v.27 no.2
    • /
    • pp.49-59
    • /
    • 2018
  • The simulation-based weapon system effectiveness analysis is to support the decision making in the acquisition process of the defense domain. The effectiveness of the weapon system is a complexly influenced indicator from various factors such as environment, doctrine and so on. And the measurement of effectiveness can be defined differently in compliance with major issues in the weapon system. Because of this, the weapon system effectiveness analysis requires the comparative experiment of various alternatives based on the underlying assumption. This paper presents the efficient approach to reconfigure the simulation using the reflection technique. The proposed method contains the recoupling and resetting the simulation entity using DEVS(Discrete EVent System specification) formalism-based dynamic plug-in method. With the proposed method, this paper designs the effectiveness analysis environment that can efficiently handle the various alternatives of the weapon system.

Discrete-Time Survival Analysis of the Determinants of the Onset of Adolescents' Status Delinquency (비연속시간 생존분석을 활용한 청소년의 최초 지위비행에 대한 영향요인 분석)

  • Yun, Hongju
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.2
    • /
    • pp.459-467
    • /
    • 2021
  • This study examined the onset of adolescent delinquency through discrete-time survival analysis. Our analysis used data obtained from the Korean Children & Youth Panel Survey, and included 2,277 middle school students. The main analysis results are as follows. First, the hazard probability for the occurrence of delinquency was the highest at 16.6% in the second year of middle school, slightly decreased in the third year of middle school, but continued to increase as the overall grade increased. Second, adolescent psychological and emotional factors have significantly affected the onset of delinquency. Third, negative parenting methods had a significant impact on delinquency, but neglect was not significant. Fourth, having delinquent friends was an important factor affecting the status of delinquency. Fifth, among the school factors, adjustment of learning activities, adjustment of school rules, and adjustment of friendship relations influenced the status of delinquency, while the adjustment of teacher relations was not significant. As early intervention is important to prevent juvenile delinquency, education and support for establishing healthy relationships are needed.

A NESTING APPROACH IN DISCRETE EVENT SIMULATION FOR INTEGRATING CONSTRUCTION OPERATION AND SCHEDULE MODELS

  • Chang-Yong Yi;Chan-Sik Park;Doo-Jin Lee;Dong-Eun Lee
    • International conference on construction engineering and project management
    • /
    • 2009.05a
    • /
    • pp.400-408
    • /
    • 2009
  • Simulation applications for analyzing the productivity of construction operations at operation level and project schedules at project level are crucial methods in project management. The application at two different levels should be very tightly linked to each other in practice. However, appropriate integration at the levels is not achieved in that existing systems do not support to integrate operation models into a schedule model. This paper presents a new approach named to Discrete Event Simulation-Nesting modeling approach, which supports not only productivity analysis at operation level but also schedule management at a project level. The system developed by the authors allows creating operation models at the operation level, maintaining them in operation model library, executing sensitivity analysis to find the behaviors of the operation models when different combination of resources are used as existing DES systems do. On top of the conventional functions, the new system facilitates to find the optimum solution of resource combinations which satisfy the user's interest by computing the hourly productivity and the hourly cost of the operation. By drag-and-dropping an operation model kept in the operation model library, the operation models are integrated into an activity of the schedule model. When a complete schedule model is established by nesting operation models into the schedule model, stochastic simulation based scheduling is executed. A case study is presented to demonstrate the new simulation system and verify the validity of the system.

  • PDF

Color Laser Printer Identification through Discrete Wavelet Transform and Gray Level Co-occurrence Matrix (이산 웨이블릿 변환과 명암도 동시발생 행렬을 이용한 컬러 레이저프린터 판별 알고리즘)

  • Baek, Ji-Yeoun;Lee, Heung-Su;Kong, Seung-Gyu;Choi, Jung-Ho;Yang, Yeon-Mo;Lee, Hae-Yeoun
    • The KIPS Transactions:PartB
    • /
    • v.17B no.3
    • /
    • pp.197-206
    • /
    • 2010
  • High-quality and low-price digital printing devices are nowadays abused to print or forge official documents and bills. Identifying color laser printers will be a step for media forensics. This paper presents a new method to identify color laser printers with printed color images. Since different printer companies use different manufactural systems, printed documents from different printers have little difference in visual. Analyzing this artifact, we can identify the color laser printers. First, high-frequency components of images are extracted from original images with discrete wavelet transform. After calculating the gray-level co-occurrence matrix of the components, we extract some statistical features. Then, these features are applied to train and classify the support vector machine for identifying the color laser printer. In the experiment, total 2,597 images of 7 printers (HP, Canon, Xerox DCC400, Xerox DCC450, Xerox DCC5560, Xerox DCC6540, Konica), are tested to classify the color laser printer. The results prove that the presented identification method performs well with 96.9% accuracy.

Dynamic Analysis of Floating Bridge Subject to Earthquake Load Considering Multi-Support Excitation (다중지점 가진 효과를 고려한 부유식 교량의 지진응답 해석)

  • 권장섭;백인열;장승필
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.8 no.2
    • /
    • pp.27-33
    • /
    • 2004
  • Dynamic response analysis is conducted for a floating bridge subjected to multiple support earthquake excitation. The floating bridge used in this study is supported by discrete floating pontoons and horizontal pretension cables supported at both ends of the bridge. The bridge is modeled with finite elements and the hydrodynamic added mass and added damping due to the surrounding fluid around pontoons are obtained using boundary elements. During the analysis the concept of retardation function is utilized to consider the frequency dependency of the hydrodynamic coefficients. Multiple support excitation is introduced at both ends of the bridge and the time history response is compared to that of a simultaneous excitation. The results show that the multiple support excitation yields larger values in some responses. for example in cable tensions. than the sumultaneous excitation.