• Title/Summary/Keyword: Discrete Optimum Design

Search Result 150, Processing Time 0.029 seconds

Warehouse Design with Discrete Characteristic of Rack (Rack의 이산적 특성을 고려한 창고설계)

  • 김성태
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.18 no.36
    • /
    • pp.183-191
    • /
    • 1995
  • When designing a warehouse, one has to recognize that the number of racks in a warehouse takes on only integer value in reality. The existing solution procedures based on noninteger values may result in poor outcomes for the design of a warehouse. This paper deals with the determination of the optimal integer for the number of racks that minimize the total material handling cost associated with the warehouse. An optimum search procedure is proposed here and a number of numerical examples are used to evaluate the efficiency of the proposed procedure.

  • PDF

Integrated Design of Feed Drive Systems Using Discrete 2-D.O.F. Controllers (II) -Formulation and Synthesis of Integrated Design- (이산형 2자유도 제어기를 이용한 이송계의 통합설계 (II) -통합설계의 정식화와 해석-)

  • Kim, Min-Seok;Chung, Sung-Chong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.7
    • /
    • pp.1038-1046
    • /
    • 2004
  • In order to acquire high-speed and high-precision performances in servomechanisms, an integrated design method have been proposed. Based on strict mathematical modeling and analysis of system performance according to design and operating parameters, a nonlinear constrained optimization problem including the relevant subsystem parameters of the servomechanism is formulated. Optimum design results of mechanical and electrical parameters are obtained according to the design parameters specified by designers through the integrated design processes. Motors are optimally selected from the servo motor database. Both the geometric errors referring to Abbe offset and the contour errors are minimized while required constraints such as stability conditions and saturated conditions are satisfied. This design methodology both offers the improved possibility to evaluate and optimize the dynamic motion performance of the servomechanism and improves the quality of the design process to achieve the required performance for high-speed/precision servomechanisms.

Multi-Objective Fuzzy Optimization of Structures (구조물에 대한 다목적퍼지최적화)

  • Park, Choon-Wook;Pyeon, Hae-Wan;Kang, Moon-Myung
    • Journal of Korean Society of Steel Construction
    • /
    • v.12 no.5 s.48
    • /
    • pp.503-513
    • /
    • 2000
  • This study treats the criteria, considering the fuzziness occurred by optimization design. And we applied two weighting methods to show the relative importance of criteria. This study develops multi-objective optimization programs implementing plain stress analysis by FEM and discrete optimization design uniformaly. The developed program performs a sample design of 10-member steel truss. This study can carry over the multi-objective optimization based on total system fuzzy-genetic algorithms while performing the stress analysis and optimization design. Especially, when general optimization with unreliable constraints is cannot be solve this study can make optimization design closed to realistic with fuzzy theory.

  • PDF

The SIMP-SRV Method for Stiffness Topology Optimization of Continuum Structures

  • Zhou, Xiangyang;Chen, Liping;Huang, Zhengdong
    • International Journal of CAD/CAM
    • /
    • v.7 no.1
    • /
    • pp.41-49
    • /
    • 2007
  • In density-based topology optimization, 0/1 solutions are sought. Discrete topological problems are often relaxed with continuous design variables so that they can be solved using continuous mathematical programming. Although the relaxed methods are practical, grey areas appear in the optimum topologies. SIMP (Solid Isotropic Microstructures with Penalization) employs penalty schemes to suppress the intermediate densities. SRV (the Sum of the Reciprocal Variables) drives the solution to a 0/1 layout with the SRV constraint. However, both methods cannot effectively remove all the grey areas. SRV has some numerical aspects. In this work, a new scheme SIMP-SRV is proposed by combining SIMP and SRV approaches, where SIMP is employed to generate an intermediate solution to initialize the design variables and SRV is then adopted to produce the final design. The new method turned out to be very effective in conjunction with the method of moving asymptotes (MMA) when using for the stiffness topology optimization of continuum structures for minimum compliance. The numerical examples show that the hybrid technique can effectively remove all grey areas and generate stiffer optimal designs characterized with a sharper boundary in contrast to SIMP and SRV.

Optimal Geometric Design of Linear Motor Using Response Surface Methodology (반응표면분석법을 이용한 리니어모터의 형상최적설계)

  • Lee, Tae-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.9 s.240
    • /
    • pp.1262-1269
    • /
    • 2005
  • Thrust of linear motor is one of the important factor to specify motor performance. Maximum thrust can be obtained by increasing the current in conductor and is relative to the sizes of conductor and magnet. But, the current and the size of conductor have an effect on temperature of linear motor. Therefore, it is practically important to find design results that can effectively maximize the thrust of linear motor within limited range of temperature. Finite element analysis was applied to calculate thrust and the temperature of the conductor was calculated by the thermal resistance. The diameter of copper wire among design variables has discrete value and number of turns must be integer. Considering these facts, special techinque for optimum design is presented. To reduce excessive computation time of thrust in optimization, the design variables was redefined by analysis of variance and second order regression model for thrust was determined by response surface metheodology. As a result, it is shown that the proposed method has an advantage in optimum design of linear motor.

Discrete Optimum Design of Steel Framed Structures Subjected to Deformed of Panel Zone (패널영역의 변형을 고려한 강뼈대 구조물의 이산화 최적설계)

  • 박순응;박문호;권민호;장준호
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.15 no.2
    • /
    • pp.315-327
    • /
    • 2002
  • The main objective of this study is to develop an discrete optimization algorithm of plane steel frames with rigid using second-order-elastic-plastic hinge analysis which is considering panel zone. Conventional analyses of steel frame are usually tarried out without considering the effect of panel zone deformation on frame behavior The validity of this model is established by comparison without panel zone on joint models is analyzed numerically to demonstrate the importance of using realistic models in steel frame analysis. The objective function is taken as Weight of steel frames and the constraints we formulated based on AISC-LRFD(1994). The validity of the developed algorithm we demonstrate by comparing the result with those of SAP2000. The result of the study indicates that the optimal design algorithm considering of panel zone behavior more economic design than simple steel frame design methods.

Athermal Elastomeric Lens Mount for Space Optics

  • Kihm, Hag-Yong;Yang, Ho-Soon;Moon, Il-Kweon;Lee, Yun-Woo
    • Journal of the Optical Society of Korea
    • /
    • v.13 no.2
    • /
    • pp.201-205
    • /
    • 2009
  • We investigated the optimum adhesive thickness for athermalizing an elastomeric lens mount in our space optics application. Theoretical results were compared with finite element solutions using two different models; discrete circular pads and discrete circular pads with columns filling the insertion holes reflecting the reality. A noticeable difference between their optimal thicknesses was observed, and physical interpretation revealed the uncertainty of prevailing athermal equations. A pilot sample was made to check our results and thermo-optical stress was assessed using an interferometer after isothermal load. This study presented insight into preliminary design guidance in elastomeric lens mounting.

Optimization of RC Plane Foames Based on The Principle of Divided Parameters (변수분리의 원리에 의한 철근콘크리트 평면 뼈대 구조물의 최적화)

  • 정영식;김봉익
    • Magazine of the Korea Concrete Institute
    • /
    • v.9 no.1
    • /
    • pp.133-141
    • /
    • 1997
  • This work presents a method of optimum design for reinforced concrete building frames with rectangular cross sections. To overcome difficulties arising from the presence of two materials in one element(concrete and steel) , the principle of divided parameters is adopted. The design variable parameters are divided into two groups - external and internal. The optimization is also divided into external and internal procedure. Several scarxh algorithms are tested to verify their accuracy for the external optimization. This work proposes a new search method, a modified pattern search, and sample problems prove its accuracy and uscf'ulness. The design obtained by this method is an optimum and in full accord with ACI Building Code Ftequirements(ACI'318-89).

Real-coded Micro-Genetic Algorithm for Nonlinear Constrained Engineering Designs

  • Kim Yunyoung;Kim Byeong-Il;Shin Sung-Chul
    • Journal of Ship and Ocean Technology
    • /
    • v.9 no.4
    • /
    • pp.35-46
    • /
    • 2005
  • The performance of optimisation methods, based on penalty functions, is highly problem- dependent and many methods require additional tuning of some variables. This additional tuning is the influences of penalty coefficient, which depend strongly on the degree of constraint violation. Moreover, Binary-coded Genetic Algorithm (BGA) meets certain difficulties when dealing with continuous and/or discrete search spaces with large dimensions. With the above reasons, Real-coded Micro-Genetic Algorithm (R$\mu$GA) is proposed to find the global optimum of continuous and/or discrete nonlinear constrained engineering problems without handling any of penalty functions. R$\mu$GA can help in avoiding the premature convergence and search for global solution-spaces, because of its wide spread applicability, global perspective and inherent parallelism. The proposed R$\mu$GA approach has been demonstrated by solving three different engineering design problems. From the simulation results, it has been concluded that R$\mu$GA is an effective global optimisation tool for solving continuous and/or discrete nonlinear constrained real­world optimisation problems.

Optimum Design of Pitch Reducer for Wind Turbine Using Genetic Algorithm (유전 알고리즘을 이용한 풍력발전기용 피치감속기의 최적 설계)

  • Kim, Jeong Gil;Park, Young Jun;Lee, Geun Ho;Nam, Yong Yun;Yang, Woo Yeoul
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.2
    • /
    • pp.185-192
    • /
    • 2014
  • Planetary gear design is complex because it involves a combination of discrete variables such as module, integer variables such as the number of teeth, and continuous variables such as face width and aspect ratio. Thus, an optimum design technique is needed. In this study, we applied a genetic algorithm to the design optimization of a planetary gear. In this algorithm, tooth root strength and surface durability are assessed with fundamental variables such as the number of teeth, module, pressure angle, and face width. With the help of this technique, gear designers could reduce trial and error in the initial design stages, thus cutting the time required for planetary gear design.