• Title/Summary/Keyword: Discrete Fourier transform (DFT) matrices

Search Result 3, Processing Time 0.019 seconds

Fast DFT Matrices Transform Based on Generalized Prime Factor Algorithm

  • Guo, Ying;Mao, Yun;Park, Dong-Sun;Lee, Moon-Ho
    • Journal of Communications and Networks
    • /
    • v.13 no.5
    • /
    • pp.449-455
    • /
    • 2011
  • Inspired by fast Jacket transforms, we propose simple factorization and construction algorithms for the M-dimensional discrete Fourier transform (DFT) matrices underlying generalized Chinese remainder theorem (CRT) index mappings. Based on successive coprime-order DFT matrices with respect to the CRT with recursive relations, the proposed algorithms are presented with simplicity and clarity on the basis of the yielded sparse matrices. The results indicate that our algorithms compare favorably with the direct-computation approach.

Variance Distributions of the DFT and CDFT (DFT와 CDFT의 분산 분포)

  • 최태영
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.21 no.4
    • /
    • pp.7-12
    • /
    • 1984
  • A composite - discrete courier transform (CDFT) is developed, which can diagonalize a real symmetric circulant matrix. In general the circulant matrices can be diagonalized by the discrete Fourier transform (DFT). With the analysis of the variance distributions of the DFT and CDFT for the general symmetric covariance matrix of real signals, the DFT and CDFT are compared with respect to the rate distortion performance measure. The results show that the CDFT is more efficient than the DFT in bit rate reduction. In addition, for a particular 64$\times$64 points covariance matrix (f(q)=(0.95)q), the amount of the relative average bit rate reduction for the CDFT with respect to the DFT is obtained by 0.0095 bit with a numerical calculation.

  • PDF

Quasi-Orthogonal Space-Time Block Codes Designs Based on Jacket Transform

  • Song, Wei;Lee, Moon-Ho;Matalgah, Mustafa M.;Guo, Ying
    • Journal of Communications and Networks
    • /
    • v.12 no.3
    • /
    • pp.240-245
    • /
    • 2010
  • Jacket matrices, motivated by the complex Hadamard matrix, have played important roles in signal processing, communications, image compression, cryptography, etc. In this paper, we suggest a novel approach to design a simple class of space-time block codes (STBCs) to reduce its peak-to-average power ratio. The proposed code provides coding gain due to the characteristics of the complex Hadamard matrix, which is a special case of Jacket matrices. Also, it can achieve full rate and full diversity with the simple decoding. Simulations show the good performance of the proposed codes in terms of symbol error rate. For generality, a kind of quasi-orthogonal STBC may be similarly designed with the improved performance.