• Title/Summary/Keyword: Discrete Fourier transform (DFT)

Search Result 167, Processing Time 0.023 seconds

Implementatin of the Discrete Rotational Fourier Transform

  • Ahn, Tae-Chon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.15 no.3E
    • /
    • pp.74-77
    • /
    • 1996
  • In this paper we implement the Discrete Rotational Fourier Transform(DRFT) which is a discrete version of the Angular Fourier Transform and its inverse transform. We simplify the computation algorithm in [4], and calculate the complexity of the proposed implementation of the DRFT and the inverse DRFT, in comparison with the complexity of a DFT (Discrete Fourier Transform).

  • PDF

Efficient Computation of the DFT and IDFT in Communication Systems Using Discrete Multitone Modulation

  • Fertner, Antoni;Hyll, Mattias;Orling, Anders
    • Journal of Communications and Networks
    • /
    • v.1 no.2
    • /
    • pp.86-88
    • /
    • 1999
  • The Discrete Fourier Transform (DFT) and the Inverse Discrete Fourier Transform (IDFT) are commonly used in signal processing applications, in particular in digital communication sys-tems using the multi-carrier modulation principle. In such systems an IDFT is computed at the transmitter end, and a DFT at the re-ceiver end. This paper examines a technique of computations, for which only negligible differences appear between the DFT and the IDFT calculations while the number of arithmetic operations re-quired is substantially reduced. This offers significant advantages for the design of an IDFT/DFT processor for Discrete Multitone(DMT) systems.

  • PDF

A Relaying Algorithm Based on Discrete Fourier Transform and Its Application to Micro-Controller (이산푸리에변환을 이용한 계전 알고리즘의 마이크로컨트롤러에 적용)

  • Ahn, Yong-Jin;Kang, Sang-Hee;Lee, Seung-Jae;Choi, Myeon-Song
    • Proceedings of the KIEE Conference
    • /
    • 1999.11b
    • /
    • pp.288-290
    • /
    • 1999
  • In view of the importance of DFT(Discrete Fourier Transform) in spectrum analysis, its computation efficiency is a topic. This paper presents calculation time to extract the power frequency at a fault signal using DFT. Furthermore, it is tested a relaying algorithm based on modified DFT and its application to Micro-controller.

  • PDF

Iris Pattern Recognition Using the DFT Coefficients (DFT계수를 이용한 홍채 인식)

  • 고현주;전명근
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2001.05a
    • /
    • pp.237-240
    • /
    • 2001
  • In this work, we will present an iris pattern recognition method as a biometrically based technology for personal identification and authentication. For this, we propose a new algorithm for extraction unique feature from images of the iris of the human eye and representing these feature using the discrete fourier transform. From the computational simplicity of the adopted transform, we can obtain more fast and efficient results than previous ones.

  • PDF

Design and Performance Evaluation of MIMO(Multiple Input Multiple Output) System Using OTFS(Orthogonal Time Frequency Space) Modulation (OTFS(Orthogonal Time Frequency Space) 변조를 사용하는 MIMO(Multiple Input Multiple Output) 시스템 설계와 성능 평가)

  • An, Changyoung;Ryu, Heung-Gyoon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.28 no.6
    • /
    • pp.444-451
    • /
    • 2017
  • In this paper, we have evaluated and analyzed OTFS(Orthogonal Time Frequency Space) modulation and OTFS-MIMO(Multiple Input Multiple Output) system. OTFS modulation can concisely compensate delay-Doppler spreading effect by using 2D(2-Dimension) iDFT (inverse Discrete Fourier Transform) and DFT(Discrete Fourier Transform) operation. It enables OTFS system to transmit high-speed data. Especially, OTFS-MIMO system can transmit all data streams without performance degradation on high Doppler frequency channel. As simulation results, we have confirmed that $1{\times}1$ OTFS system's achievable rate is a similar to each stream of $2{\times}2$ OTFS-MIMO system. That is, we have also confirmed that $2{\times}2$ MIMO system can completely achieve double achievable rate in comparison with OTFS system on high Doppler frequency channel.

Fast DFT Matrices Transform Based on Generalized Prime Factor Algorithm

  • Guo, Ying;Mao, Yun;Park, Dong-Sun;Lee, Moon-Ho
    • Journal of Communications and Networks
    • /
    • v.13 no.5
    • /
    • pp.449-455
    • /
    • 2011
  • Inspired by fast Jacket transforms, we propose simple factorization and construction algorithms for the M-dimensional discrete Fourier transform (DFT) matrices underlying generalized Chinese remainder theorem (CRT) index mappings. Based on successive coprime-order DFT matrices with respect to the CRT with recursive relations, the proposed algorithms are presented with simplicity and clarity on the basis of the yielded sparse matrices. The results indicate that our algorithms compare favorably with the direct-computation approach.

A Fast Parameter Estimation of Time Series Data Using Discrete Fourier Transform (이산푸리에변환과 시계열데이터의 고속 파라미터 추정)

  • Shim, Kwan-Shik;Nam, Hae-Kon
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.55 no.7
    • /
    • pp.265-272
    • /
    • 2006
  • This paper describes a method of parameter estimation of time series data using discrete Fourier transform(DFT). DFT have been mainly used to precisely and rapidly obtain the frequency of a signal. In a dynamic system, a real part of a mode used to learn damping characteristics is a more important factor than the frequency of the mode. The parameter estimation method of this paper can directly estimate modes and parameters, indicating the characteristics of a dynamic system, on the basis of the Fourier transform of the time series data. Real part of a mode estimates by subtracting a frequency of the Fourier spectrum corresponding to 0.707 of a magnitude of the peak spectrum from a peak frequency, or subtracting a frequency of the power spectrum corresponding to 0.5 of the peak power spectrum from a peak frequency, or comparing the Fourier(power) spectrum ratio. Also, the residue and phase of time signal calculate by simple equation with the real part of the mode and the power spectrum that have been calculated. Accordingly, the proposed algorithm is advantageous in that it can estimate parameters of the system through a single DFT without repeatedly calculating a DFT, thus shortening the time required to estimate the parameters.

A Study on Text Pattern Analysis Applying Discrete Fourier Transform - Focusing on Sentence Plagiarism Detection - (이산 푸리에 변환을 적용한 텍스트 패턴 분석에 관한 연구 - 표절 문장 탐색 중심으로 -)

  • Lee, Jung-Song;Park, Soon-Cheol
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.22 no.2
    • /
    • pp.43-52
    • /
    • 2017
  • Pattern Analysis is One of the Most Important Techniques in the Signal and Image Processing and Text Mining Fields. Discrete Fourier Transform (DFT) is Generally Used to Analyzing the Pattern of Signals and Images. We thought DFT could also be used on the Analysis of Text Patterns. In this Paper, DFT is Firstly Adapted in the World to the Sentence Plagiarism Detection Which Detects if Text Patterns of a Document Exist in Other Documents. We Signalize the Texts Converting Texts to ASCII Codes and Apply the Cross-Correlation Method to Detect the Simple Text Plagiarisms such as Cut-and-paste, term Relocations and etc. WordNet is using to find Similarities to Detect the Plagiarism that uses Synonyms, Translations, Summarizations and etc. The Data set, 2013 Corpus, Provided by PAN Which is the One of Well-known Workshops for Text Plagiarism is used in our Experiments. Our Method are Fourth Ranked Among the Eleven most Outstanding Plagiarism Detection Methods.

Object-based digital watermarking methods in frequency domain (주파수 영역에서의 객체기반 디지털 워터마크)

  • Kim, Hyun-Tae;Kim, Dae-Jin;Won, Chee-Sun
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.37 no.5
    • /
    • pp.9-20
    • /
    • 2000
  • In this paper we compare two frequency domain digital watermarking methods for digital Images, namely DCT(Discrete Cosine Transform) based and DFT(Discrete Fourier Transform) based methods. Unlike DCT coefficients, which always have real values, DFT coefficients normally have complex values Therefore, the DFT coefficients have amplitude and phase components Among them, the phase components are known to carry more Important information for the Images. So, we insert the watermark to the phase of the DFT coefficients only This DFT watermarking method is compared with the conventional DCT based watermarking method for the object-based watermarking problem. Experimental results show that the DFT-phase based method IS more robust to general Image processing attacks including resize, lossy compression(JPEG), blurring and median filtering. On the other hand, the DCT based method is more robust to the malicious attack which inserts different watermarks.

  • PDF

An Efficient Transceiver Technique for Wideband VHF Baseband Modem (광대역 VHF 기저대역 모뎀의 효율적인 송·수신 기법)

  • Lee, Hwang-Hee;Kim, Jae-Hwan;Yang, Won-Young;Cho, Yong-Soo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38B no.4
    • /
    • pp.305-313
    • /
    • 2013
  • As an FMT (Filtered Multi-Tone) transmission method of Wideband VHF communication system specified by the ETS (European Telecommunications Standards) EN 300 392-2, this paper introduces three existing realization methods, i.e., the direct filtering method using different band SRRC (Square-Root Raised Cosine) filters for each subcarrier, the PPN-DFT method using the IDFT-PPN (Poly-Phase Network) and PPN-DFT at the transmitter and receiver, respectively, and the Extended DFT method. Then, it proposes the extended IDFT-SDFT (Sliding Discrete Fourier Transform) that computes the DFT values only for interested subcarriers every sample time, and shows that it has an advantage of blind symbol timing (using no training symbol) individually for each user signal (independently of other users' signals) in the multi-user environment where the subcarriers are assigned in contiguous or interleaved blocks to each user and each user signal possibly experiences different channels.