• Title/Summary/Keyword: Discrete Fourier Transform

Search Result 333, Processing Time 0.026 seconds

Selected Mapping without Side Information at the Receiver (수신기에서 부가정보가 필요 없는 Selected Mapping 기법)

  • Jang, Chanki;Yoon, Eunchul
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.9
    • /
    • pp.1710-1718
    • /
    • 2015
  • Selected mapping (SLM) is an effective scheme to reduce the peak to average power ratio (PAPR) of an orthogonal frequency division multiplexing (OFDM) system. For data recovery, the receiver needs to know the side information (SI) on the scrambling sequence selected by the transmitter. In this paper, a new SLM scheme is proposed, which can reduce implementation complexity substantially by allowing the receiver to recover the data without SI. In the proposed SLM method, the concept of virtual channel corresponding to the convolution of the multipath channel and the inverse discrete fourier transform (IDFT) of the scrambling sequence is assumed. The receiver can recover the data without SI by using the virtual channel estimated with pilot signals. It is shown by simulation that the proposed SLM has PAPR reduction and BER performances similar to the previous SLM schemes while it can reduce implementation complexity substantially.

Characterization of Fracture Roughness in Coarse.medium.fine Grained Granite (암반 불연속면의 거칠기 특성 - 조.중.세립질 화강암을 중심으로 -)

  • 김종태;정교철;김만일;송재용;박창근
    • The Journal of Engineering Geology
    • /
    • v.14 no.2
    • /
    • pp.147-168
    • /
    • 2004
  • Purpose of this study is to quantitatively characterize the fracture roughness which was measured with a confocal laser scanning microscope. The roughness discrete data measured by confocal laser microscope were analyzed by spectral analysis and fast Fourier transform (FFT).The roughness data by used noise reduction filter were applied for fractal analysis to describe roughness features quantitatively. Artificial fractures created by Brazilian test on granites were used to measure fracture roughness under the confocal laser scanning microscope. Measurements were performed along three scan lines on each fracture surface. 36 scan lines were determined on 12 specimens in total. Features of roughness showed that coarse and medium grained granites tend to more rough features than those of fine grained granites. Continuous analog data of roughness is possible to described as discrete data of measure roughness with a fixed interval under the confocal laser microscope. Results of FFT with the measured data showed the highest values on the second harmonics. Distribution of average amplitude of second harmonics was observed 0.9853 in coarse grained granite, 1.0792 in medium grained granite and 0.6794 in fine grained granite. This indicates that the larger roughness has the higher energy of harmonics as the result of fractal analysis in low frequency zone.

Comparative Study of the Symbol Rate Detection of Unknown Digital Communication Signals (미상 디지털 통신 신호의 심볼율 검출 방식 비교)

  • Joo, Se-Joon;Hong, Een-Kee
    • Journal of Advanced Navigation Technology
    • /
    • v.7 no.2
    • /
    • pp.141-148
    • /
    • 2003
  • This paper presents and compares several techniques that detect the symbol rate of unknown received signal. Symbol rate is detected from the power spectral density of the circuits such as the delay and multiplier circuit, the square law circuit, and analytic signal, etc. As a result of discrete Fourier transform of the output signals of these circuits, a lot of spectral lines and some peaks appear in frequency domain and the position of first peak is corresponding to the symbol rate. If a spectral line on the frequency that is not located in symbol rate is larger than the first peak, the symbol rate is erroneously detected. Thus, the ratio between the value of first peak and the highest side spectral line is used for the measure of the performance of symbol rate detector. For the MPSK modulation, the analytic signal method shows better performance than the delay and multiplier and square law circuits when the received signal power is lager than -20dB. It is also noted that the delay and multiplier circuit is not able to detect the symbol rate for the QAM modulation.

  • PDF

A Study on the Estimation of Ocean Surface Wave Information from Marine Radar Signals (선박 레이더 영상신호를 이용한 파랑정보 검출에 관한 연구)

  • Song, Chae-Uk;Kim, Chang-Je;Moon, Seong-Bae
    • Journal of Navigation and Port Research
    • /
    • v.27 no.5
    • /
    • pp.499-504
    • /
    • 2003
  • This paper describes the system for evaluating the sea wave informations such as wave direction and wave length in real time, by using image data obtained from the marine X-band radar. We proposed here a method for automatic selection of the partial image data without the user's individual selection at the radar. We also discussed that the wave direction could be obtained by a 2-dimensional discrete Fourier transform algorithm. We carried some evaluation works on the algorithm through computer simulation. The obtained thirteen radar image data under several sea surface conditions were analyzed by the method described and the result was presented.

A Turbo-coded OFDM Transmission System Using Orthogonal Code Multiplexing (직교코드 다중화를 이용한 터보부호화된 OFDM 전송 시스템)

  • 정방철;오성근;선우명훈
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.5A
    • /
    • pp.333-340
    • /
    • 2003
  • In this paper, we propose a new turbo-coded orthogonal frequency division multiplexing (OFDM) transmission scheme that can improve greatly the performance by making all the turbo-coded symbols have the same reliability for OFDM transmission over a frequency selective fading channel. The same reliability, that is, the same fading can be accomplished through multiplexing of turbo-coded symbols using distinct orthogonal codes and spreading over the whole effective subcarriers (hereafter, called as the orthogonal code multiplexing (OCM)). As for the orthogonal code selection, we choose the set of the discrete Fourier transform (DFT) basis sequences, since the code set holds the orthogonality irrespective of the length and also has the equal energy property. We perform computer simulations using the Log-maximum-a-posteriori (Log-MAP) algorithm for iterative decoding in order to assess the performance of the proposed transmission scheme.

BER Performance Comparison and Evaluation of 5G Candidate Waveforms Based on DFT Spreading under the Nonlinear HPA (비선형 HPA 환경에서 DFT Spreading 기반 5세대 후보변조기술의 BER 성능 비교와 평가)

  • An, Changyoung;Ryu, Heung-Gyoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.4
    • /
    • pp.415-423
    • /
    • 2016
  • High PAPR (Peak-to-Average Power Ratio) characteristic causes some problems like system performance degradation and OOB (Out-of-Band) power increasement under the HPA (High Power Amplifier) nonlinearity condition. UFMC (Universal Filtered Multi-Carrier) and FBMC (Filter Bank Multi-Carrier) are regarded as 5G(Generation) candidate waveforms. In this paper, we evaluate and analyze performance of these systems with DFT-s (Discrete Fourier Transform Spreading) technique under the nonlinear HPA environment. In this paper, we describe OFDM (Orthogonal Frequency Division Multiplexing), UFMC, FBMC, DFT-s-OFDM, DFT-s-UFMC, and DFT-s-FBMC system, and evaluate BER (Bit Error Rate) performance of these systems. As simulation results, BER performance degradation by HPA nonlinearity of DFT-s-OFDM and DFT-s-UFMC is greatly overcome by DFT spreading technique. However, BER performance degradation by HPA nonlinearity of DFT-s-FBMC system is little overcome.

Design and Performance Gain Evaluation of a Multi-Rank Codebook Utilizing Statistical Properties of the Spatial Channel Model (공간 채널 모델의 통계적 특성을 반영한 다중 랭크 코드북의 설계 및 성능 이득 평가)

  • Kim, Changhyeon;Sung, Wonjin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.7
    • /
    • pp.723-731
    • /
    • 2016
  • A core technological base to provide enhanced data rates required by 5G mobile wireless communications is the improved bandwidth efficiency using massive multiple-input multiple-output (MIMO) transmission. MIMO transmission requires the channel estimation using the channel state information reference signaling (CSI-RS) and appropriate beamforming, thus the design of the codebook defining proper beamforming vectors is an important issue. In this paper, we propose a multi-rank codebook based on the discrete Fourier transform (DFT) matrix, by utilizing statistical properties of the channel generated by the spatial channel model (SCM). The proposed method includes a structural change of the precoding matrix indicator (PMI) by considering the phase difference distributions between adjacent antenna elements, as well as the selected codevector characteristics of each transmission layer. Performance gain of the proposed method is evaluated and verified by making the performance comparison to the 3GPP standard codebooks adopted by Long-Term Evolution (LTE) systems.

A Development of the High-Performance Signal Processor for the Compact Millimeter Wave Radar (소형 밀리미터파 레이더를 위한 고성능 신호처리기 개발)

  • Choi, Jin-Kyu;Ryu, Han-Chun;Park, Seung-Wook;Kim, Ji-Hyun;Kwon, Jun-Beom
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.17 no.6
    • /
    • pp.161-167
    • /
    • 2017
  • Recently, small radar has been reduced in size and power consumption to cope with various operating environments. It also requires the development of a small millimeter wave radar with high range resolution to disable the system of target with a single strike. In this paper, we design and implement a signal processor that can be used in small millimeter wave radar. The signal processor for the small millmeter wave radar is designed with a digital IF(Intermediate Frequency) receiver and DFT(Discrete Fourier Transform) module capable of real time FFT operation for miniaturization and low power consumption. Also it was to leverage the FPGA(Field Programmable Gate Array) and DAC(Digital Analog Converter) as a means for correcting the distortion of signals that can occur in the receive path of the small millimeter wave radar to create a RF signal that is used by the system. Finally, we verified the signal processor presented through performance test

A Study on the Formulation of High Resolution Range Profile and ISAR Image Using Sparse Recovery Algorithm (Sparse 복원 알고리즘을 이용한 HRRP 및 ISAR 영상 형성에 관한 연구)

  • Bae, Ji-Hoon;Kim, Kyung-Tae;Yang, Eun-Jung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.4
    • /
    • pp.467-475
    • /
    • 2014
  • In this paper, we introduce a sparse recovery algorithm applied to a radar signal model, based on the compressive sensing(CS), for the formulation of the radar signatures, such as high-resolution range profile(HRRP) and ISAR(Inverse Synthetic Aperture Radar) image. When there exits missing data in observed RCS data samples, we cannot obtain correct high-resolution radar signatures with the traditional IDFT(Inverse Discrete Fourier Transform) method. However, high-resolution radar signatures using the sparse recovery algorithm can be successfully recovered in the presence of data missing and qualities of the recovered radar signatures are nearly comparable to those of radar signatures using a complete RCS data without missing data. Therefore, the results show that the sparse recovery algorithm rather than the DFT method can be suitably applied for the reconstruction of high-resolution radar signatures, although we collect incomplete RCS data due to unwanted interferences or jamming signals.

A Study on Real-time Data Preprocessing Technique for Small Millimeter Wave Radar (소형 밀리미터파 레이더를 위한 실시간 데이터 전처리 방법 연구)

  • Choi, Jinkyu;Shin, Youngcheol;Hong, Soonil;Park, Changhyun;Kim, Younjin;Kim, Hongrak;Kwon, Junbeom
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.6
    • /
    • pp.79-85
    • /
    • 2019
  • Recently, small radar require the development of small millimeter wave radar with high distance resolution to disable the target's system with a single strike. Small millimeter wave radar with high distance resolution need to process large amounts of data in real time to acquire and track target. In this paper, we summarized the real-time data preprocessing method to process the large amount of data required for small millimeter wave radar. In addition, the digital IF(Intermediate Frequency) receiver, Window processing, and, DFT(Discrete Fourier Transform) functions presented by real-time data preprocessing are implemented using FPGA(Field Programmable Gate Array). Finally the implemented real-time data preprocessing module was applied to the signal processor for small millimeter wave radar and verified by performance test related to the real-time preprocessing function.